Suppr超能文献

基于机器学习的胃肠道疾病检测与分类。

Detection and Classification of Gastrointestinal Diseases using Machine Learning.

机构信息

Department of Computer Science, COMSATS University Islamabad, Wah Campus, Pakistan.

Department of Computer Science, Hitec University Taxila, Taxila, Pakistan.

出版信息

Curr Med Imaging. 2021;17(4):479-490. doi: 10.2174/1573405616666200928144626.

Abstract

BACKGROUND

Traditional endoscopy is an invasive and painful method of examining the gastrointestinal tract (GIT) not supported by physicians and patients. To handle this issue, video endoscopy (VE) or wireless capsule endoscopy (WCE) is recommended and utilized for GIT examination. Furthermore, manual assessment of captured images is not possible for an expert physician because it's a time taking task to analyze thousands of images thoroughly. Hence, there comes the need for a Computer-Aided-Diagnosis (CAD) method to help doctors analyze images. Many researchers have proposed techniques for automated recognition and classification of abnormality in captured images.

METHODS

In this article, existing methods for automated classification, segmentation and detection of several GI diseases are discussed. Paper gives a comprehensive detail about these state-of-theart methods. Furthermore, literature is divided into several subsections based on preprocessing techniques, segmentation techniques, handcrafted features based techniques and deep learning based techniques. Finally, issues, challenges and limitations are also undertaken.

RESULTS

A comparative analysis of different approaches for the detection and classification of GI infections.

CONCLUSION

This comprehensive review article combines information related to a number of GI diseases diagnosis methods at one place. This article will facilitate the researchers to develop new algorithms and approaches for early detection of GI diseases detection with more promising results as compared to the existing ones of literature.

摘要

背景

传统的内窥镜检查是一种侵入性和痛苦的胃肠道(GIT)检查方法,不受医生和患者的支持。为了解决这个问题,推荐并使用视频内窥镜(VE)或无线胶囊内窥镜(WCE)进行 GIT 检查。此外,由于分析数千张图像需要花费大量时间,因此专家医生无法手动评估捕获的图像。因此,需要一种计算机辅助诊断(CAD)方法来帮助医生分析图像。许多研究人员已经提出了用于自动识别和分类捕获图像中异常的技术。

方法

本文讨论了用于自动分类、分割和检测几种 GI 疾病的现有方法。本文详细介绍了这些最新技术。此外,文献根据预处理技术、分割技术、基于手工特征的技术和基于深度学习的技术进行了细分。最后,还讨论了存在的问题、挑战和局限性。

结果

对 GI 感染检测和分类的不同方法进行了比较分析。

结论

这篇综合评论文章将与胃肠道疾病诊断方法相关的信息汇集在一处。与现有文献相比,这篇文章将为研究人员提供便利,帮助他们开发用于早期检测胃肠道疾病的新算法和方法,从而获得更有前途的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验