Suppr超能文献

利用容积 CT 测量评估肿瘤负担增长率,增强转移性结直肠癌治疗效果的检测。

Enhanced Detection of Treatment Effects on Metastatic Colorectal Cancer with Volumetric CT Measurements for Tumor Burden Growth Rate Evaluation.

机构信息

Inova Schar Cancer Institute, Fairfax, Virginia.

University of Virginia Cancer Center and Department of Medicine, Charlottesville, Virginia.

出版信息

Clin Cancer Res. 2020 Dec 15;26(24):6464-6474. doi: 10.1158/1078-0432.CCR-20-1493. Epub 2020 Sep 28.

Abstract

PURPOSE

Mathematical models combined with new imaging technologies could improve clinical oncology studies. To improve detection of therapeutic effect in patients with cancer, we assessed volumetric measurement of target lesions to estimate the rates of exponential tumor growth and regression as treatment is administered.

EXPERIMENTAL DESIGN

Two completed phase III trials were studied (988 patients) of aflibercept or panitumumab added to standard chemotherapy for advanced colorectal cancer. Retrospectively, radiologists performed semiautomated measurements of all metastatic lesions on CT images. Using exponential growth modeling, tumor regression () and growth () rates were estimated for each patient's unidimensional and volumetric measurements.

RESULTS

Exponential growth modeling of volumetric measurements detected different empiric mechanisms of effect for each drug: panitumumab marginally augmented the decay rate [tumor half-life; [IQR]: 36.5 days (56.3, 29.0)] of chemotherapy [: 44.5 days (67.2, 32.1), two-sided Wilcoxon = 0.016], whereas aflibercept more significantly slowed the growth rate [doubling time; = 300.8 days (154.0, 572.3)] compared with chemotherapy alone [ = 155.9 days (82.2, 347.0), ≤ 0.0001]. An association of with overall survival (OS) was observed. Simulating clinical trials using volumetric or unidimensional tumor measurements, fewer patients were required to detect a treatment effect using a volumetric measurement-based strategy (32-60 patients) than for unidimensional measurement-based strategies (124-184 patients).

CONCLUSIONS

Combined tumor volume measurement and estimation of tumor regression and growth rate has potential to enhance assessment of treatment effects in clinical studies of colorectal cancer that would not be achieved with conventional, RECIST-based unidimensional measurements.

摘要

目的

数学模型与新型成像技术相结合,可改善临床肿瘤学研究。为了提高癌症患者的治疗效果检测能力,我们评估了靶病灶的体积测量,以在治疗过程中估计指数肿瘤生长和消退的速度。

实验设计

研究了 aflibercept 或 panitumumab 联合标准化疗治疗晚期结直肠癌的两项完成的 III 期试验(988 例患者)。回顾性地,放射科医生对 CT 图像上的所有转移性病变进行半自动化测量。使用指数增长模型,对每位患者的一维和体积测量结果进行肿瘤消退()和生长()速度的估计。

结果

每种药物的体积测量的指数增长模型都检测到不同的经验性作用机制:panitumumab 略微增加了化疗的衰减率[肿瘤半衰期;中位数(IQR):36.5 天(56.3,29.0)] [:44.5 天(67.2,32.1),双侧 Wilcoxon 检验=0.016],而 aflibercept 与单独化疗相比,更显著地减缓了生长速度[倍增时间;中位数(IQR):300.8 天(154.0,572.3)] [ = 155.9 天(82.2,347.0),≤0.0001]。观察到与总生存期(OS)相关。使用体积或一维肿瘤测量值模拟临床试验,使用基于体积测量的策略(32-60 例患者)比使用基于一维测量的策略(124-184 例患者)检测治疗效果所需的患者更少。

结论

结合肿瘤体积测量和肿瘤消退及生长速度的估计,有可能增强结直肠癌临床研究中治疗效果的评估,这是常规基于 RECIST 的一维测量无法实现的。

相似文献

1
Enhanced Detection of Treatment Effects on Metastatic Colorectal Cancer with Volumetric CT Measurements for Tumor Burden Growth Rate Evaluation.
Clin Cancer Res. 2020 Dec 15;26(24):6464-6474. doi: 10.1158/1078-0432.CCR-20-1493. Epub 2020 Sep 28.
2
Volumetric Versus Unidimensional Measures of Metastatic Colorectal Cancer in Assessing Disease Response.
Clin Colorectal Cancer. 2017 Dec;16(4):324-333.e1. doi: 10.1016/j.clcc.2017.03.009. Epub 2017 Mar 27.
3
Comparison of CT volumetric measurement with RECIST response in patients with lung cancer.
Eur J Radiol. 2016 Mar;85(3):524-33. doi: 10.1016/j.ejrad.2015.12.019. Epub 2016 Jan 2.
6
CT Volumetry and Basic Texture Analysis as Surrogate Markers in Advanced Non-small-cell Lung Cancer.
Clin Lung Cancer. 2020 May;21(3):225-231. doi: 10.1016/j.cllc.2019.08.004. Epub 2019 Oct 8.

引用本文的文献

3
Comparing quantitative imaging biomarker alliance volumetric CT classifications with RECIST response categories.
Radiol Adv. 2025 Jan 6;2(1):umaf001. doi: 10.1093/radadv/umaf001. eCollection 2025 Jan.
4
Mechanistic Learning for Predicting Survival Outcomes in Head and Neck Squamous Cell Carcinoma.
CPT Pharmacometrics Syst Pharmacol. 2025 Mar;14(3):540-550. doi: 10.1002/psp4.13294. Epub 2024 Dec 25.
8
Analysis of data from the PALOMA-3 trial confirms the efficacy of palbociclib and offers alternatives for novel assessment of clinical trials.
Breast Cancer Res Treat. 2024 Feb;204(1):39-47. doi: 10.1007/s10549-023-07131-7. Epub 2023 Nov 13.
9
Modeling Tumor Growth Using Partly Conditional Survival Models: A Case Study in Colorectal Cancer.
JCO Clin Cancer Inform. 2023 Sep;7:e2200203. doi: 10.1200/CCI.22.00203.

本文引用的文献

1
Progress and Opportunities to Advance Clinical Cancer Therapeutics Using Tumor Dynamic Models.
Clin Cancer Res. 2020 Apr 15;26(8):1787-1795. doi: 10.1158/1078-0432.CCR-19-0287. Epub 2019 Dec 23.
4
Distinct Phenotypic Clusters of Glioblastoma Growth and Response Kinetics Predict Survival.
JCO Clin Cancer Inform. 2018 Dec;2:1-14. doi: 10.1200/CCI.17.00080.
7
A Response Assessment Platform for Development and Validation of Imaging Biomarkers in Oncology.
Tomography. 2016 Dec;2(4):406-410. doi: 10.18383/j.tom.2016.00223.
9
Exposure-Response Analysis of Necitumumab Efficacy in Squamous Non-Small Cell Lung Cancer Patients.
CPT Pharmacometrics Syst Pharmacol. 2017 Aug;6(8):560-568. doi: 10.1002/psp4.12209. Epub 2017 Jul 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验