Kao Jhih-Yuan, Chou Chung-Hsien
Department of Physics, National Cheng Kung University, Tainan, 70101, Taiwan.
Center for Quantum Frontiers of Research and Technology, NCKU, Tainan, 70101, Taiwan.
Sci Rep. 2020 Sep 29;10(1):15978. doi: 10.1038/s41598-020-72881-z.
Quantum operations are the fundamental transformations on quantum states. In this work, we study the relation between entangling capacities of operations, geometry of operations, and positive partial transpose (PPT) states, which are an important class of states in quantum information. We show a method to calculate bounds for entangling capacity, the amount of entanglement that can be produced by a quantum operation, in terms of negativity, a measure of entanglement. The bounds of entangling capacity are found to be associated with how non-PPT (PPT preserving) an operation is. A length that quantifies both entangling capacity/entanglement and PPT-ness of an operation or state can be defined, establishing a geometry characterized by PPT-ness. The distance derived from the length bounds the relative entangling capability, endowing the geometry with more physical significance. We also demonstrate the equivalence of PPT-ness and separability for unitary operations.
量子操作是量子态上的基本变换。在这项工作中,我们研究了操作的纠缠能力、操作的几何结构与正部分转置(PPT)态之间的关系,其中PPT态是量子信息中一类重要的态。我们展示了一种根据负性(一种纠缠度量)来计算纠缠能力(量子操作能够产生的纠缠量)界限的方法。发现纠缠能力的界限与一个操作偏离非PPT(保持PPT)的程度有关。可以定义一个量化操作或态的纠缠能力/纠缠以及PPT性质的长度,从而建立一种以PPT性质为特征的几何结构。由该长度导出的距离限制了相对纠缠能力,赋予了这种几何结构更多的物理意义。我们还证明了酉操作的PPT性质和可分性的等价性。