Suppr超能文献

一种基于胸部X光片表现,利用纹理特征和神经网络对新型冠状病毒COVID-19进行分类的新方法。

A new approach for classifying coronavirus COVID-19 based on its manifestation on chest X-rays using texture features and neural networks.

作者信息

Varela-Santos Sergio, Melin Patricia

机构信息

Division of Graduate Studies, Tijuana Institute of Technology, Tijuana, 22414 Baja CA, Mexico.

出版信息

Inf Sci (N Y). 2021 Feb 4;545:403-414. doi: 10.1016/j.ins.2020.09.041. Epub 2020 Sep 24.

Abstract

Since the recent challenge that humanity is facing against COVID-19, several initiatives have been put forward with the goal of creating measures to help control the spread of the pandemic. In this paper we present a series of experiments using supervised learning models in order to perform an accurate classification on datasets consisting of medical images from COVID-19 patients and medical images of several other related diseases affecting the lungs. This work represents an initial experimentation using image texture feature descriptors, feed-forward and convolutional neural networks on newly created databases with COVID-19 images. The goal was setting a baseline for the future development of a system capable of automatically detecting the COVID-19 disease based on its manifestation on chest X-rays and computerized tomography images of the lungs.

摘要

自从人类最近面临新冠疫情的挑战以来,已经提出了几项倡议,目标是制定措施来帮助控制疫情的传播。在本文中,我们展示了一系列使用监督学习模型的实验,以便对由新冠患者的医学图像以及其他几种影响肺部的相关疾病的医学图像组成的数据集进行准确分类。这项工作代表了在新创建的包含新冠图像的数据库上,使用图像纹理特征描述符、前馈神经网络和卷积神经网络的初步实验。目标是为未来开发一个能够根据胸部X光和肺部计算机断层扫描图像上的表现自动检测新冠疾病的系统设定一个基线。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8a2/7513693/c613571005eb/gr1_lrg.jpg

相似文献

2
Using handpicked features in conjunction with ResNet-50 for improved detection of COVID-19 from chest X-ray images.
Chaos Solitons Fractals. 2021 Apr;145:110749. doi: 10.1016/j.chaos.2021.110749. Epub 2021 Feb 10.
4
Deep learning approaches for COVID-19 detection based on chest X-ray images.
Expert Syst Appl. 2021 Feb;164:114054. doi: 10.1016/j.eswa.2020.114054. Epub 2020 Sep 28.
5
COVID-19 identification in chest X-ray images on flat and hierarchical classification scenarios.
Comput Methods Programs Biomed. 2020 Oct;194:105532. doi: 10.1016/j.cmpb.2020.105532. Epub 2020 May 8.
7
Coronavirus disease analysis using chest X-ray images and a novel deep convolutional neural network.
Photodiagnosis Photodyn Ther. 2021 Sep;35:102473. doi: 10.1016/j.pdpdt.2021.102473. Epub 2021 Aug 1.
8
Chest X-ray image phase features for improved diagnosis of COVID-19 using convolutional neural network.
Int J Comput Assist Radiol Surg. 2021 Feb;16(2):197-206. doi: 10.1007/s11548-020-02305-w. Epub 2021 Jan 9.
9
CNN-RNN Network Integration for the Diagnosis of COVID-19 Using Chest X-ray and CT Images.
Sensors (Basel). 2023 Jan 25;23(3):1356. doi: 10.3390/s23031356.

引用本文的文献

1
An augmentation aided concise CNN based architecture for COVID-19 diagnosis in real time.
Sci Rep. 2024 Jan 11;14(1):1136. doi: 10.1038/s41598-024-51317-y.
2
Effects of official information and rumor on resource-epidemic coevolution dynamics.
J King Saud Univ Comput Inf Sci. 2022 Nov;34(10):9207-9215. doi: 10.1016/j.jksuci.2022.09.003. Epub 2022 Sep 8.
3
A comprehensive review of federated learning for COVID-19 detection.
Int J Intell Syst. 2022 Mar;37(3):2371-2392. doi: 10.1002/int.22777. Epub 2021 Dec 6.
4
Deep Learning for Detecting COVID-19 Using Medical Images.
Bioengineering (Basel). 2022 Dec 22;10(1):19. doi: 10.3390/bioengineering10010019.
5
A MobileNet-based CNN model with a novel fine-tuning mechanism for COVID-19 infection detection.
Soft comput. 2023;27(9):5521-5535. doi: 10.1007/s00500-022-07798-y. Epub 2023 Jan 4.
6
MIC-Net: A deep network for cross-site segmentation of COVID-19 infection in the fog-assisted IoMT.
Inf Sci (N Y). 2023 Apr;623:20-39. doi: 10.1016/j.ins.2022.12.017. Epub 2022 Dec 13.
7
Diagnosis of COVID-19 Disease in Chest CT-Scan Images Based on Combination of Low-Level Texture Analysis and MobileNetV2 Features.
Comput Intell Neurosci. 2022 Nov 30;2022:1658615. doi: 10.1155/2022/1658615. eCollection 2022.
9
DenseNet-II: an improved deep convolutional neural network for melanoma cancer detection.
Soft comput. 2022 Aug 24:1-20. doi: 10.1007/s00500-022-07406-z.
10
DAFLNet: Dual Asymmetric Feature Learning Network for COVID-19 Disease Diagnosis in X-Rays.
Comput Math Methods Med. 2022 Aug 9;2022:3836498. doi: 10.1155/2022/3836498. eCollection 2022.

本文引用的文献

1
Imaging Profile of the COVID-19 Infection: Radiologic Findings and Literature Review.
Radiol Cardiothorac Imaging. 2020 Feb 13;2(1):e200034. doi: 10.1148/ryct.2020200034. eCollection 2020 Feb.
2
A deep learning algorithm using CT images to screen for Corona virus disease (COVID-19).
Eur Radiol. 2021 Aug;31(8):6096-6104. doi: 10.1007/s00330-021-07715-1. Epub 2021 Feb 24.
4
Explainable Deep Learning for Pulmonary Disease and Coronavirus COVID-19 Detection from X-rays.
Comput Methods Programs Biomed. 2020 Nov;196:105608. doi: 10.1016/j.cmpb.2020.105608. Epub 2020 Jun 20.
5
COVID-19 identification in chest X-ray images on flat and hierarchical classification scenarios.
Comput Methods Programs Biomed. 2020 Oct;194:105532. doi: 10.1016/j.cmpb.2020.105532. Epub 2020 May 8.
6
COVID-19: Prevention and control measures in community.
Turk J Med Sci. 2020 Apr 21;50(SI-1):571-577. doi: 10.3906/sag-2004-146.
7
Coronavirus Disease 2019 (COVID-19) CT Findings: A Systematic Review and Meta-analysis.
J Am Coll Radiol. 2020 Jun;17(6):701-709. doi: 10.1016/j.jacr.2020.03.006. Epub 2020 Mar 25.
8
Diagnosis of the Coronavirus disease (COVID-19): rRT-PCR or CT?
Eur J Radiol. 2020 May;126:108961. doi: 10.1016/j.ejrad.2020.108961. Epub 2020 Mar 25.
9
Imaging manifestations and diagnostic value of chest CT of coronavirus disease 2019 (COVID-19) in the Xiaogan area.
Clin Radiol. 2020 May;75(5):341-347. doi: 10.1016/j.crad.2020.03.004. Epub 2020 Mar 23.
10
CT manifestations of coronavirus disease-2019: A retrospective analysis of 73 cases by disease severity.
Eur J Radiol. 2020 May;126:108941. doi: 10.1016/j.ejrad.2020.108941. Epub 2020 Mar 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验