Department of Social Policy and Intervention, University of Oxford, Oxford, UK.
Department of Public Health, Environments and Society, London School of Hygiene and Tropical Medicine, London, UK.
Int J Epidemiol. 2021 Jan 23;49(6):2010-2020. doi: 10.1093/ije/dyaa152.
Interrupted time series designs are a valuable quasi-experimental approach for evaluating public health interventions. Interrupted time series extends a single group pre-post comparison by using multiple time points to control for underlying trends. But history bias-confounding by unexpected events occurring at the same time of the intervention-threatens the validity of this design and limits causal inference. Synthetic control methodology, a popular data-driven technique for deriving a control series from a pool of unexposed populations, is increasingly recommended. In this paper, we evaluate if and when synthetic controls can strengthen an interrupted time series design. First, we summarize the main observational study designs used in evaluative research, highlighting their respective uses, strengths, biases and design extensions for addressing these biases. Second, we outline when the use of synthetic controls can strengthen interrupted time series studies and when their combined use may be problematic. Third, we provide recommendations for using synthetic controls in interrupted time series and, using a real-world example, we illustrate the potential pitfalls of using a data-driven approach to identify a suitable control series. Finally, we emphasize the importance of theoretical approaches for informing study design and argue that synthetic control methods are not always well suited for generating a counterfactual that minimizes critical threats to interrupted time series studies. Advances in synthetic control methods bring new opportunities to conduct rigorous research in evaluating public health interventions. However, incorporating synthetic controls in interrupted time series studies may not always nullify important threats to validity nor improve causal inference.
中断时间序列设计是一种评估公共卫生干预措施的有价值的准实验方法。中断时间序列通过使用多个时间点来控制潜在趋势,扩展了单个群组前后比较。但是,历史偏差——干预同时发生的意外事件造成的混淆——威胁到了这种设计的有效性,并限制了因果推断。合成控制方法是一种从未暴露人群中得出控制系列的流行数据驱动技术,越来越受到推荐。在本文中,我们评估了合成控制是否以及何时可以增强中断时间序列设计。首先,我们总结了评价研究中使用的主要观察性研究设计,突出了它们各自的用途、优势、偏差以及用于解决这些偏差的设计扩展。其次,我们概述了何时使用合成控制可以增强中断时间序列研究,以及何时它们的联合使用可能会出现问题。第三,我们提供了在中断时间序列中使用合成控制的建议,并使用真实世界的例子说明了使用数据驱动方法识别合适的控制系列可能存在的潜在陷阱。最后,我们强调了理论方法对于指导研究设计的重要性,并认为合成控制方法并不总是适合生成最小化中断时间序列研究重要威胁的反事实。合成控制方法的进步为评估公共卫生干预措施带来了进行严格研究的新机会。然而,在中断时间序列研究中纳入合成控制可能并不总是能消除对有效性的重要威胁,也不一定能改善因果推断。