Departent of Neurosurgery, University of Athens Medical School, National and Kapodistrian University of Athens, Athens, Greece.
Department of Neurosurgery, School of Medicine, University of Thessaly, Larisa, Greece.
J Magn Reson Imaging. 2022 Jan;55(1):48-60. doi: 10.1002/jmri.27378. Epub 2020 Oct 2.
Meningioma is one of the most frequent primary central nervous system tumors. While magnetic resonance imaging (MRI), is the standard radiologic technique for provisional diagnosis and surveillance of meningioma, it nevertheless lacks the prima facie capacity in determining meningioma biological aggressiveness, growth, and recurrence potential. An increasing body of evidence highlights the potential of machine learning and radiomics in improving the consistency and productivity and in providing novel diagnostic, treatment, and prognostic modalities in neuroncology imaging. The aim of the present article is to review the evolution and progress of approaches utilizing machine learning in meningioma MRI-based sementation, diagnosis, grading, and prognosis. We provide a historical perspective on original research on meningioma spanning over two decades and highlight recent studies indicating the feasibility of pertinent approaches, including deep learning in addressing several clinically challenging aspects. We indicate the limitations of previous research designs and resources and propose future directions by highlighting areas of research that remain largely unexplored. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY STAGE: 2.
脑膜瘤是最常见的原发性中枢神经系统肿瘤之一。磁共振成像(MRI)是脑膜瘤的标准影像学诊断和监测技术,但它缺乏确定脑膜瘤生物学侵袭性、生长和复发潜能的能力。越来越多的证据强调了机器学习和放射组学在提高神经影像学诊断、治疗和预后的一致性和效率方面的潜力,并提供了新的诊断、治疗和预后方法。本文旨在回顾利用机器学习在脑膜瘤 MRI 分割、诊断、分级和预后中的应用的发展和进展。我们提供了二十多年来脑膜瘤原始研究的历史视角,并强调了最近的研究表明,相关方法的可行性,包括深度学习在解决几个具有临床挑战性的方面的可行性。我们指出了以前研究设计和资源的局限性,并通过突出仍在很大程度上未被探索的研究领域,提出了未来的方向。证据水平:5 技术功效阶段:2。