Suppr超能文献

利用深度学习对局部立体定向消融放疗的大体积肺癌患者进行生物剂量预测建模。

Using deep learning to model the biological dose prediction on bulky lung cancer patients of partial stereotactic ablation radiotherapy.

作者信息

Li Yue, He Kanghui, Ma Mingwei, Qi Xin, Bai Yun, Liu Siwei, Gao Yan, Lyu Feng, Jia Chenghao, Zhao Bo, Gao Xianshu

机构信息

Department of Radiation Oncology, Peking University First Hospital, Beijing, China.

School of Aeronautic Science and Engineering, Beihang University, Beijing, China.

出版信息

Med Phys. 2020 Dec;47(12):6540-6550. doi: 10.1002/mp.14518. Epub 2020 Oct 26.

Abstract

PURPOSE

To develop a biological dose prediction model considering tissue bio-reactions in addition to patient anatomy for achieving a more comprehensive evaluation of tumor control and promoting the automatic planning of bulky lung cancer.

METHODS

A database containing images and partial stereotactic ablation boost radiotherapy (P-SABR) plans of 94 bulky lung cancer patients was studied. Patient-specific parameters of gross tumor boost volume (GTVb), planning gross target volume (PGTV), and identified organs at risk (OARs) were extracted via Numpy and simple ITK. The original dose and structure maps for P-SABR patients were resampled to have a voxel resolution of 3.9 × 3.9 × 3 mm . Biological equivalent dose (BED) distributions were reprogrammed based on physical dose volumes. A developed deep learning architecture, Nestnet, was adopted as the training framework. We utilized two approaches for data organization to correlate the structures and BED: (a) BED programming before training model (B-Nestnet); (b) BED programming after the training process (D-B Nestnet). The early-stop mechanism was adopted on the validation set to avoid overfitting. The evaluation criteria of predictive accuracy contain the minimum BED of GTVb and PGTV, the maximum and the mean BED of all targets, BED-volume metrics. For comparison, we also used the original Unet for BED prediction. The absolute differences were statistically analyzed with the paired-samples t test.

RESULTS

The statistical outcomes demonstrate that D-B Nestnet model predicts biological dose distributions accurately. The average absolute biases of [max, mean] BED for GTVb, PGTV are [2.1%, 3.3%] and [2.1%, 4.7%], respectively. Averaging across most of OARs, the D-B Nestnet model is capable of predicting the errors of the max and mean BED within 6.3% and 6.1%, respectively. While the compared models performed worse with averaged max and mean BED prediction errors surpassing 10% on some specific OARs.

CONCLUSIONS

The study developed a D-B Nestnet model capable of predicting BED distribution accurately for bulky lung cancer patients in P-SABR. The predicted BED map enables a quick intuitive evaluation of tumor ablation, modification of the ablation range to improve BED of tumor targets, and quality assessment. It represents a major step forward toward automated P-SABR planning on bulky lung cancer in real clinical practice.

摘要

目的

开发一种除患者解剖结构外还考虑组织生物反应的生物剂量预测模型,以更全面地评估肿瘤控制情况,并促进大体积肺癌的自动计划制定。

方法

研究了一个包含94例大体积肺癌患者的图像和部分立体定向消融增强放疗(P-SABR)计划的数据库。通过Numpy和简单的ITK提取患者特异性的大体肿瘤增强体积(GTVb)、计划大体靶体积(PGTV)以及确定的危及器官(OARs)的参数。将P-SABR患者的原始剂量和结构图谱重新采样,使其体素分辨率为3.9×3.9×3mm。基于物理剂量体积重新编程生物等效剂量(BED)分布。采用一种开发的深度学习架构Nestnet作为训练框架。我们利用两种数据组织方法来关联结构和BED:(a)在训练模型前进行BED编程(B-Nestnet);(b)在训练过程后进行BED编程(D-B Nestnet)。在验证集上采用早期停止机制以避免过拟合。预测准确性的评估标准包括GTVb和PGTV的最小BED、所有靶区的最大和平均BED、BED-体积指标。为作比较,我们还使用原始的Unet进行BED预测。使用配对样本t检验对绝对差异进行统计学分析。

结果

统计结果表明,D-B Nestnet模型能准确预测生物剂量分布。GTVb、PGTV的[最大,平均]BED的平均绝对偏差分别为[2.1%,3.3%]和[2.1%,4.7%]。在大多数OARs上进行平均,D-B Nestnet模型能够分别在6.3%和6.1%以内预测最大和平均BED的误差。而相比之下的模型表现较差,在一些特定的OARs上,平均最大和平均BED预测误差超过10%。

结论

该研究开发了一种D-B Nestnet模型,能够为P-SABR中的大体积肺癌患者准确预测BED分布。预测的BED图谱能够对肿瘤消融进行快速直观的评估、修改消融范围以提高肿瘤靶区的BED以及进行质量评估。它代表了在实际临床实践中朝着大体积肺癌的自动化P-SABR计划迈出的重要一步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验