Suppr超能文献

基于卡尔曼滤波器的多通道心冲击图信号无干扰心动周期间期估计

Unobtrusive Inter-beat Interval Estimation from Multichannel Ballistocardiogram Signal Using Kalman Filter.

作者信息

Huang Yongfeng, Sun Chenxi, Jin Tianchen, Yang Shuchen, Zhang Zhiming

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:455-460. doi: 10.1109/EMBC44109.2020.9176247.

Abstract

Unobtrusively detecting inter-beat interval (IBI) from ballistocardiogram (BCG) is useful for monitoring cardiac activity at home, especially for calculating heart rate variability (HRV), the critical indicator to evaluate heart health. Compared to single-sensor system in most studies, this research used a bed-embedded 9 by 2 array sensors system to improve measurement coverage and precision of IBI estimation. Based on this system, we proposed a mode-switch based algorithm to solve the problem on array sensor signal selection and multichannel data fusion using linear regression model and Kalman filter. In addition, a peak detection algorithm was designed to estimate IBI from each channel signal. The algorithm was validated by approximately 48 hours BCG recordings captured from 24 subjects with different sleeping positions. A mean absolute error of 31ms at 83% average coverage was obtained by the proposed method, which has proven to be a promising candidate for IBI estimation from BCG signal on multichannel array sensors system.

摘要

从心冲击图(BCG)中隐蔽地检测心动周期(IBI)对于在家中监测心脏活动非常有用,特别是用于计算心率变异性(HRV),这是评估心脏健康的关键指标。与大多数研究中的单传感器系统相比,本研究使用了嵌入床体的9×2阵列传感器系统,以提高IBI估计的测量覆盖范围和精度。基于该系统,我们提出了一种基于模式切换的算法,使用线性回归模型和卡尔曼滤波器解决阵列传感器信号选择和多通道数据融合问题。此外,还设计了一种峰值检测算法,用于从每个通道信号中估计IBI。该算法通过从24名不同睡眠姿势的受试者中采集的约48小时BCG记录进行了验证。所提出的方法在平均覆盖率为83%时获得了31ms的平均绝对误差,这已被证明是在多通道阵列传感器系统上从BCG信号估计IBI的一个有前景的候选方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验