Liang Gongbo, Wang Xiaoqin, Zhang Yu, Jacobs Nathan
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:1124-1127. doi: 10.1109/EMBC44109.2020.9176617.
The use of deep learning methods has dramatically increased the state-of-the-art performance in image object localization. However, commonly used supervised learning methods require large training datasets with pixel-level or bounding box annotations. Obtaining such fine-grained annotations is extremely costly, especially in the medical imaging domain. In this work, we propose a novel weakly supervised method for breast cancer localization. The essential advantage of our approach is that the model only requires image-level labels and uses a self-training strategy to refine the predicted localization in a step-wise manner. We evaluated our approach on a large, clinically relevant mammogram dataset. The results show that our model significantly improves performance compared to other methods trained similarly.
深度学习方法的使用极大地提高了图像目标定位方面的先进性能。然而,常用的监督学习方法需要带有像素级或边界框注释的大型训练数据集。获取此类细粒度注释的成本极高,尤其是在医学成像领域。在这项工作中,我们提出了一种用于乳腺癌定位的新型弱监督方法。我们方法的本质优势在于该模型仅需要图像级标签,并使用自训练策略逐步优化预测的定位。我们在一个大型的、与临床相关的乳房X光图像数据集上评估了我们的方法。结果表明,与其他以类似方式训练的方法相比,我们的模型显著提高了性能。