Suppr超能文献

使用定量CT和机器学习预测脑转移瘤立体定向放射治疗后的局部失败

Predicting Local Failure after Stereotactic Radiation Therapy in Brain Metastasis using Quantitative CT and Machine Learning.

作者信息

Jaberipour Majid, Sahgal Arjun, Soliman Hany, Sadeghi-Naini Ali

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:1323-1326. doi: 10.1109/EMBC44109.2020.9175746.

Abstract

Despite recent advances in cancer treatment, the prognosis of patients diagnosed with brain metastasis is still poor. The median survival is limited to months even for patients undergoing treatment. Radiation therapy is a main component of treatment for brain metastasis. However, radiotherapy cannot control local progression in up to 20% of the metastatic brain tumours. An early prediction of radiotherapy outcome for individual patients could facilitate therapy adjustments to improve its efficacy. This study investigated the potential of quantitative CT biomarkers in conjunction with machine learning methods to predict local failure after radiotherapy in brain metastasis. Volumetric CT images were acquired for radiation treatment planning from 120 patients undergoing stereotactic radiotherapy. Quantitative features characterizing the morphology and texture were extracted from different regions of each lesion. A feature reduction/selection framework was adapted to define a quantitative CT biomarker of radiotherapy outcome. Different machine learning methods were applied and evaluated to predict the local failure outcome at pre-treatment. The optimum biomarker consisting of two features in conjunction with an AdaBoost with decision tree could predict the local failure outcome with 71% accuracy on an independent test set (20 patients, 31 lesions). This study is a step forward towards prediction of radiotherapy outcome in brain metastasis using quantitative imaging and machine learning.

摘要

尽管近年来癌症治疗取得了进展,但被诊断为脑转移的患者预后仍然很差。即使对于接受治疗的患者,中位生存期也仅为几个月。放射治疗是脑转移治疗的主要组成部分。然而,放射治疗无法控制高达20%的转移性脑肿瘤的局部进展。对个体患者的放射治疗结果进行早期预测有助于调整治疗方案以提高疗效。本研究探讨了定量CT生物标志物结合机器学习方法预测脑转移放疗后局部失败的潜力。从120例接受立体定向放疗的患者获取用于放射治疗计划的容积CT图像。从每个病灶的不同区域提取表征形态和纹理的定量特征。采用特征约简/选择框架来定义放射治疗结果的定量CT生物标志物。应用并评估了不同的机器学习方法以预测治疗前的局部失败结果。由两个特征组成的最佳生物标志物与基于决策树的AdaBoost相结合,在独立测试集(20例患者,31个病灶)上预测局部失败结果的准确率可达71%。本研究朝着利用定量成像和机器学习预测脑转移放疗结果迈出了一步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验