Suppr超能文献

二氧化钛和金纳米颗粒上蛋白质吸附能的计算机模拟预测

In Silico Prediction of Protein Adsorption Energy on Titanium Dioxide and Gold Nanoparticles.

作者信息

Alsharif Shada A, Power David, Rouse Ian, Lobaskin Vladimir

机构信息

School of Physics, University College Dublin, Belfield, Dublin 4, Ireland.

出版信息

Nanomaterials (Basel). 2020 Oct 4;10(10):1967. doi: 10.3390/nano10101967.

Abstract

The free energy of adsorption of proteins onto nanoparticles offers an insight into the biological activity of these particles in the body, but calculating these energies is challenging at the atomistic resolution. In addition, structural information of the proteins may not be readily available. In this work, we demonstrate how information about adsorption affinity of proteins onto nanoparticles can be obtained from first principles with minimum experimental input. We use a multiscale model of protein-nanoparticle interaction to evaluate adsorption energies for a set of 59 human blood serum proteins on gold and titanium dioxide (anatase) nanoparticles of various sizes. For each protein, we compare the results for 3D structures derived from experiments to those predicted computationally from amino acid sequences using the I-TASSER methodology and software. Based on these calculations and 2D and 3D protein descriptors, we develop statistical models for predicting the binding energy of proteins, enabling the rapid characterization of the affinity of nanoparticles to a wide range of proteins.

摘要

蛋白质吸附到纳米颗粒上的自由能有助于深入了解这些颗粒在体内的生物活性,但在原子分辨率下计算这些能量具有挑战性。此外,蛋白质的结构信息可能无法轻易获得。在这项工作中,我们展示了如何以最少的实验输入从第一性原理获得蛋白质与纳米颗粒吸附亲和力的信息。我们使用蛋白质 - 纳米颗粒相互作用的多尺度模型来评估一组59种人血清蛋白在各种尺寸的金和二氧化钛(锐钛矿)纳米颗粒上的吸附能。对于每种蛋白质,我们将实验得出的3D结构结果与使用I-TASSER方法和软件从氨基酸序列计算预测的结果进行比较。基于这些计算以及二维和三维蛋白质描述符,我们开发了用于预测蛋白质结合能的统计模型,从而能够快速表征纳米颗粒对多种蛋白质的亲和力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验