Suppr超能文献

过冷水中纳米流体滑移的快速增加:动力学的关键作用。

Fast increase of nanofluidic slip in supercooled water: the key role of dynamics.

作者信息

Herrero Cecilia, Tocci Gabriele, Merabia Samy, Joly Laurent

机构信息

Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France.

Department of Chemistry, Universität Zürich, 8057 Zürich, Switzerland.

出版信息

Nanoscale. 2020 Oct 15;12(39):20396-20403. doi: 10.1039/d0nr06399a.

Abstract

Nanofluidics is an emerging field offering innovative solutions for energy harvesting and desalination. The efficiency of these applications depends strongly on liquid-solid slip, arising from a favorable ratio between viscosity and interfacial friction. Using molecular dynamics simulations, we show that wall slip increases strongly when water is cooled below its melting point. For water on graphene, the slip length is multiplied by up to a factor of five and reaches 230 nm at the lowest simulated temperature, T ∼ 225 K; experiments in nanopores can reach much lower temperatures and could reveal even more drastic changes. The predicted fast increase in water slip can also be detected at supercoolings reached experimentally in bulk water, as well as in droplets flowing on anti-icing surfaces. We explain the anomalous slip behavior in the supercooled regime by a decoupling between viscosity and bulk density relaxation dynamics, and we rationalize the wall-type dependence of the enhancement in terms of interfacial density relaxation dynamics. While providing fundamental insights on the molecular mechanisms of hydrodynamic transport in both interfacial and bulk water in the supercooled regime, this study is relevant to the design of anti-icing surfaces, could help explain the subtle phase and dynamical behaviors of supercooled confined water, and paves the way to explore new behaviors in supercooled nanofluidic systems.

摘要

纳米流体学是一个新兴领域,为能量收集和海水淡化提供创新解决方案。这些应用的效率在很大程度上取决于液固滑移,这是由粘度与界面摩擦之间的有利比率引起的。通过分子动力学模拟,我们表明,当水冷却到熔点以下时,壁面滑移会大幅增加。对于石墨烯上的水,滑移长度最多可增加到五倍,在最低模拟温度T ∼ 225 K时达到230 nm;纳米孔实验可以达到更低的温度,可能会揭示出更剧烈的变化。在实验中达到的过冷状态下,无论是在大量水中还是在防冰表面上流动的液滴中,都能检测到预测的水滑移快速增加。我们通过粘度与体密度弛豫动力学之间的解耦来解释过冷状态下的异常滑移行为,并根据界面密度弛豫动力学来合理化增强效应的壁面类型依赖性。这项研究在提供关于过冷状态下界面水和大量水中流体动力学传输分子机制的基本见解的同时,与防冰表面的设计相关,有助于解释过冷受限水的微妙相态和动力学行为,并为探索过冷纳米流体系统中的新行为铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验