Suppr超能文献

基于变换的多分辨率分解在蜂窝网络中的降级检测。

Transform-Based Multiresolution Decomposition for Degradation Detection in Cellular Networks.

机构信息

Departamento de Ingeniería de Comunicaciones, Campus de Teatinos s/n, Andalucía Tech, Universidad de Málaga, 29071 Málaga, Spain.

Department of Signal Theory, Telematics and Communications (TSTC), Universidad de Granada, 18071 Granada, Spain.

出版信息

Sensors (Basel). 2020 Oct 2;20(19):5645. doi: 10.3390/s20195645.

Abstract

Anomaly detection in the performance of the huge number of elements that are part of cellular networks (base stations, core entities, and user equipment) is one of the most time consuming and key activities for supporting failure management procedures and ensuring the required performance of the telecommunication services. This activity originally relied on direct human inspection of cellular metrics (counters, key performance indicators, etc.). Currently, degradation detection procedures have experienced an evolution towards the use of automatic mechanisms of statistical analysis and machine learning. However, pre-existent solutions typically rely on the manual definition of the values to be considered abnormal or on large sets of labeled data, highly reducing their performance in the presence of long-term trends in the metrics or previously unknown patterns of degradation. In this field, the present work proposes a novel application of transform-based analysis, using wavelet transform, for the detection and study of network degradations. The proposed system is tested using cell-level metrics obtained from a real-world LTE cellular network, showing its capabilities to detect and characterize anomalies of different patterns and in the presence of varied temporal trends. This is performed without the need for manually establishing normality thresholds and taking advantage of wavelet transform capabilities to separate the metrics in multiple time-frequency components. Our results show how direct statistical analysis of these components allows for a successful detection of anomalies beyond the capabilities of detection of previous methods.

摘要

对构成蜂窝网络(基站、核心实体和用户设备)的大量元素的性能进行异常检测是支持故障管理程序和确保电信服务所需性能的最耗时和关键的活动之一。这项活动最初依赖于对蜂窝网络指标(计数器、关键性能指标等)的直接人工检查。目前,降级检测程序已经朝着使用统计分析和机器学习的自动机制发展。然而,现有的解决方案通常依赖于手动定义要考虑为异常的数值,或者依赖于大量标记数据,这极大地降低了它们在指标存在长期趋势或以前未知的降级模式时的性能。在这个领域,本工作提出了一种基于变换的分析的新应用,使用小波变换来检测和研究网络降级。该系统使用从真实的 LTE 蜂窝网络获得的小区级指标进行测试,展示了其检测和表征不同模式和存在多种时间趋势的异常的能力。这是在不需要手动建立正态性阈值的情况下完成的,并利用小波变换的能力将指标分离到多个时频分量中。我们的结果表明,对这些分量进行直接的统计分析如何能够成功检测到以前的方法无法检测到的异常。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a670/7583856/0a40dfd81806/sensors-20-05645-g001.jpg

相似文献

1
Transform-Based Multiresolution Decomposition for Degradation Detection in Cellular Networks.
Sensors (Basel). 2020 Oct 2;20(19):5645. doi: 10.3390/s20195645.
2
Online Anomaly Detection System for Mobile Networks.
Sensors (Basel). 2020 Dec 17;20(24):7232. doi: 10.3390/s20247232.
3
Multiresolution dendritic cell algorithm for network anomaly detection.
PeerJ Comput Sci. 2021 Oct 19;7:e749. doi: 10.7717/peerj-cs.749. eCollection 2021.
4
SADE3: an effective system for automated detection of epileptiform events in long-term EEG based on context information.
Med Biol Eng Comput. 2006 Jun;44(6):459-70. doi: 10.1007/s11517-006-0056-y. Epub 2006 May 4.
6
Real-Time Epileptic Seizure Detection Using EEG.
IEEE Trans Neural Syst Rehabil Eng. 2017 Nov;25(11):2146-2156. doi: 10.1109/TNSRE.2017.2697920. Epub 2017 Apr 25.
7
Wavelet-Based Visual Analysis of Dynamic Networks.
IEEE Trans Vis Comput Graph. 2018 Aug;24(8):2456-2469. doi: 10.1109/TVCG.2017.2746080. Epub 2017 Aug 29.
8
Location-Awareness for Failure Management in Cellular Networks: An Integrated Approach.
Sensors (Basel). 2021 Feb 22;21(4):1501. doi: 10.3390/s21041501.
9
Critical Care Network in the State of Qatar.
Qatar Med J. 2019 Nov 7;2019(2):2. doi: 10.5339/qmj.2019.qccc.2. eCollection 2019.
10
Multiresolution analysis of event-related potentials by wavelet decomposition.
Brain Cogn. 1995 Apr;27(3):398-438. doi: 10.1006/brcg.1995.1028.

本文引用的文献

1
Epileptic seizure classification of EEG time-series using rational discrete short-time fourier transform.
IEEE Trans Biomed Eng. 2015 Feb;62(2):541-52. doi: 10.1109/TBME.2014.2360101. Epub 2014 Sep 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验