Departamento de Ingeniería de Comunicaciones, Campus de Teatinos s/n, Andalucía Tech, Universidad de Málaga, 29071 Málaga, Spain.
Department of Signal Theory, Telematics and Communications (TSTC), Universidad de Granada, 18071 Granada, Spain.
Sensors (Basel). 2020 Oct 2;20(19):5645. doi: 10.3390/s20195645.
Anomaly detection in the performance of the huge number of elements that are part of cellular networks (base stations, core entities, and user equipment) is one of the most time consuming and key activities for supporting failure management procedures and ensuring the required performance of the telecommunication services. This activity originally relied on direct human inspection of cellular metrics (counters, key performance indicators, etc.). Currently, degradation detection procedures have experienced an evolution towards the use of automatic mechanisms of statistical analysis and machine learning. However, pre-existent solutions typically rely on the manual definition of the values to be considered abnormal or on large sets of labeled data, highly reducing their performance in the presence of long-term trends in the metrics or previously unknown patterns of degradation. In this field, the present work proposes a novel application of transform-based analysis, using wavelet transform, for the detection and study of network degradations. The proposed system is tested using cell-level metrics obtained from a real-world LTE cellular network, showing its capabilities to detect and characterize anomalies of different patterns and in the presence of varied temporal trends. This is performed without the need for manually establishing normality thresholds and taking advantage of wavelet transform capabilities to separate the metrics in multiple time-frequency components. Our results show how direct statistical analysis of these components allows for a successful detection of anomalies beyond the capabilities of detection of previous methods.
对构成蜂窝网络(基站、核心实体和用户设备)的大量元素的性能进行异常检测是支持故障管理程序和确保电信服务所需性能的最耗时和关键的活动之一。这项活动最初依赖于对蜂窝网络指标(计数器、关键性能指标等)的直接人工检查。目前,降级检测程序已经朝着使用统计分析和机器学习的自动机制发展。然而,现有的解决方案通常依赖于手动定义要考虑为异常的数值,或者依赖于大量标记数据,这极大地降低了它们在指标存在长期趋势或以前未知的降级模式时的性能。在这个领域,本工作提出了一种基于变换的分析的新应用,使用小波变换来检测和研究网络降级。该系统使用从真实的 LTE 蜂窝网络获得的小区级指标进行测试,展示了其检测和表征不同模式和存在多种时间趋势的异常的能力。这是在不需要手动建立正态性阈值的情况下完成的,并利用小波变换的能力将指标分离到多个时频分量中。我们的结果表明,对这些分量进行直接的统计分析如何能够成功检测到以前的方法无法检测到的异常。