IEEE Trans Vis Comput Graph. 2021 Feb;27(2):989-999. doi: 10.1109/TVCG.2020.3028984. Epub 2021 Jan 28.
A Bayesian view of data interpretation suggests that a visualization user should update their existing beliefs about a parameter's value in accordance with the amount of information about the parameter value captured by the new observations. Extending recent work applying Bayesian models to understand and evaluate belief updating from visualizations, we show how the predictions of Bayesian inference can be used to guide more rational belief updating. We design a Bayesian inference-assisted uncertainty analogy that numerically relates uncertainty in observed data to the user's subjective uncertainty, and a posterior visualization that prescribes how a user should update their beliefs given their prior beliefs and the observed data. In a pre-registered experiment on 4,800 people, we find that when a newly observed data sample is relatively small (N=158), both techniques reliably improve people's Bayesian updating on average compared to the current best practice of visualizing uncertainty in the observed data. For large data samples (N=5208), where people's updated beliefs tend to deviate more strongly from the prescriptions of a Bayesian model, we find evidence that the effectiveness of the two forms of Bayesian assistance may depend on people's proclivity toward trusting the source of the data. We discuss how our results provide insight into individual processes of belief updating and subjective uncertainty, and how understanding these aspects of interpretation paves the way for more sophisticated interactive visualizations for analysis and communication.
贝叶斯数据分析方法认为,可视化用户应该根据新观测结果中捕获到的关于参数值的信息量,更新他们对参数值的现有置信度。在最近的应用贝叶斯模型来理解和评估可视化中置信度更新的工作基础上,我们展示了如何使用贝叶斯推断的预测来指导更合理的置信度更新。我们设计了一种贝叶斯推理辅助不确定性类比方法,该方法可以将观测数据中的不确定性与用户的主观不确定性进行数值关联,以及一种后验可视化方法,用于根据用户的先验信念和观测数据来规定如何更新他们的信念。在一项针对 4800 人的预先注册实验中,我们发现当新观察到的数据样本较小时(N=158),与当前可视化观测数据中不确定性的最佳实践相比,这两种技术都能可靠地提高人们的贝叶斯更新平均水平。对于大数据样本(N=5208),人们更新后的信念往往会更强烈地偏离贝叶斯模型的规定,我们发现有证据表明,这两种形式的贝叶斯辅助的有效性可能取决于人们对数据来源的信任倾向。我们讨论了我们的结果如何为个人的信念更新和主观不确定性过程提供了深入的了解,以及理解这些解释方面如何为更复杂的分析和沟通交互式可视化铺平道路。