Suppr超能文献

高斯图形模型的期望条件最大化方法。

An Expectation Conditional Maximization approach for Gaussian graphical models.

作者信息

Li Zehang Richard, McCormick Tyler H

机构信息

Department of Biostatistics, Yale School of Public Health.

Departments of Statistics & Sociology, University of Washington.

出版信息

J Comput Graph Stat. 2019;28(4):767-777. doi: 10.1080/10618600.2019.1609976. Epub 2019 Jun 19.

Abstract

Bayesian graphical models are a useful tool for understanding dependence relationships among many variables, particularly in situations with external prior information. In high-dimensional settings, the space of possible graphs becomes enormous, rendering even state-of-the-art Bayesian stochastic search computationally infeasible. We propose a deterministic alternative to estimate Gaussian and Gaussian copula graphical models using an Expectation Conditional Maximization (ECM) algorithm, extending the EM approach from Bayesian variable selection to graphical model estimation. We show that the ECM approach enables fast posterior exploration under a sequence of mixture priors, and can incorporate multiple sources of information.

摘要

贝叶斯图形模型是理解多个变量之间依赖关系的有用工具,特别是在具有外部先验信息的情况下。在高维设置中,可能图形的空间变得非常大,使得即使是最先进的贝叶斯随机搜索在计算上也不可行。我们提出了一种确定性替代方法,使用期望条件最大化(ECM)算法来估计高斯和高斯copula图形模型,将EM方法从贝叶斯变量选择扩展到图形模型估计。我们表明,ECM方法能够在一系列混合先验下进行快速后验探索,并且可以纳入多个信息源。

相似文献

1
An Expectation Conditional Maximization approach for Gaussian graphical models.
J Comput Graph Stat. 2019;28(4):767-777. doi: 10.1080/10618600.2019.1609976. Epub 2019 Jun 19.
2
A modeling framework for detecting and leveraging node-level information in Bayesian network inference.
Biostatistics. 2024 Dec 31;26(1). doi: 10.1093/biostatistics/kxae021.
3
Bayesian Joint Spike-and-Slab Graphical Lasso.
Proc Mach Learn Res. 2019 Jun;97:3877-3885.
4
Bayesian sparse graphical models and their mixtures.
Stat. 2014 Jan 1;3(1):109-125. doi: 10.1002/sta4.49.
5
Estimation of High-Dimensional Graphical Models Using Regularized Score Matching.
Electron J Stat. 2016;10(1):806-854. doi: 10.1214/16-EJS1126. Epub 2016 Apr 6.
6
Bayesian multiple Gaussian graphical models for multilevel variables from unknown classes.
Stat Methods Med Res. 2022 Apr;31(4):594-611. doi: 10.1177/09622802211022405. Epub 2022 Feb 15.
7
Regression-Based Bayesian Estimation and Structure Learning for Nonparanormal Graphical Models.
Stat Anal Data Min. 2022 Oct;15(5):611-629. doi: 10.1002/sam.11576. Epub 2022 Feb 28.
8
The spike-and-slab lasso and scalable algorithm to accommodate multinomial outcomes in variable selection problems.
J Appl Stat. 2023 Sep 14;51(11):2039-2061. doi: 10.1080/02664763.2023.2258301. eCollection 2024.
9
Using Bayesian Latent Gaussian Graphical Models to Infer Symptom Associations in Verbal Autopsies.
Bayesian Anal. 2020 Sep;15(3):781-807. doi: 10.1214/19-ba1172. Epub 2019 Sep 24.
10
GPU-powered Shotgun Stochastic Search for Dirichlet process mixtures of Gaussian Graphical Models.
J Comput Graph Stat. 2016;25(3):762-788. doi: 10.1080/10618600.2015.1037883. Epub 2016 Aug 5.

引用本文的文献

1
A modeling framework for detecting and leveraging node-level information in Bayesian network inference.
Biostatistics. 2024 Dec 31;26(1). doi: 10.1093/biostatistics/kxae021.
2
Latent Network Estimation and Variable Selection for Compositional Data Via Variational EM.
J Comput Graph Stat. 2022;31(1):163-175. doi: 10.1080/10618600.2021.1935971. Epub 2021 Jul 19.
3
Regression-Based Bayesian Estimation and Structure Learning for Nonparanormal Graphical Models.
Stat Anal Data Min. 2022 Oct;15(5):611-629. doi: 10.1002/sam.11576. Epub 2022 Feb 28.
4
Bayesian Joint Spike-and-Slab Graphical Lasso.
Proc Mach Learn Res. 2019 Jun;97:3877-3885.
5
Using Bayesian Latent Gaussian Graphical Models to Infer Symptom Associations in Verbal Autopsies.
Bayesian Anal. 2020 Sep;15(3):781-807. doi: 10.1214/19-ba1172. Epub 2019 Sep 24.
6
Bayesian modeling of multiple structural connectivity networks during the progression of Alzheimer's disease.
Biometrics. 2020 Dec;76(4):1120-1132. doi: 10.1111/biom.13235. Epub 2020 Feb 19.

本文引用的文献

1
Bayesian Joint Modeling of Multiple Brain Functional Networks.
J Am Stat Assoc. 2021;116(534):518-530. doi: 10.1080/01621459.2020.1796357. Epub 2020 Sep 1.
2
Integrating additional knowledge into the estimation of graphical models.
Int J Biostat. 2021 Mar 9;18(1):1-17. doi: 10.1515/ijb-2020-0133.
3
Probabilistic Cause-of-death Assignment using Verbal Autopsies.
J Am Stat Assoc. 2016;111(515):1036-1049. doi: 10.1080/01621459.2016.1152191. Epub 2016 Oct 18.
4
Bayesian Inference for General Gaussian Graphical Models With Application to Multivariate Lattice Data.
J Am Stat Assoc. 2011;106(496):1418-1433. doi: 10.1198/jasa.2011.tm10465. Epub 2012 Dec 24.
6
A shortened verbal autopsy instrument for use in routine mortality surveillance systems.
BMC Med. 2015 Dec 16;13:302. doi: 10.1186/s12916-015-0528-8.
7
Joint Bayesian variable and graph selection for regression models with network-structured predictors.
Stat Med. 2016 Mar 30;35(7):1017-31. doi: 10.1002/sim.6792. Epub 2015 Oct 29.
8
The graphical lasso: New insights and alternatives.
Electron J Stat. 2012 Nov 9;6:2125-2149. doi: 10.1214/12-EJS740.
10
Inferring metabolic networks using the Bayesian adaptive graphical lasso with informative priors.
Stat Interface. 2013 Oct 1;6(4):547-558. doi: 10.4310/SII.2013.v6.n4.a12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验