Li Zehang Richard, McCormick Tyler H
Department of Biostatistics, Yale School of Public Health.
Departments of Statistics & Sociology, University of Washington.
J Comput Graph Stat. 2019;28(4):767-777. doi: 10.1080/10618600.2019.1609976. Epub 2019 Jun 19.
Bayesian graphical models are a useful tool for understanding dependence relationships among many variables, particularly in situations with external prior information. In high-dimensional settings, the space of possible graphs becomes enormous, rendering even state-of-the-art Bayesian stochastic search computationally infeasible. We propose a deterministic alternative to estimate Gaussian and Gaussian copula graphical models using an Expectation Conditional Maximization (ECM) algorithm, extending the EM approach from Bayesian variable selection to graphical model estimation. We show that the ECM approach enables fast posterior exploration under a sequence of mixture priors, and can incorporate multiple sources of information.
贝叶斯图形模型是理解多个变量之间依赖关系的有用工具,特别是在具有外部先验信息的情况下。在高维设置中,可能图形的空间变得非常大,使得即使是最先进的贝叶斯随机搜索在计算上也不可行。我们提出了一种确定性替代方法,使用期望条件最大化(ECM)算法来估计高斯和高斯copula图形模型,将EM方法从贝叶斯变量选择扩展到图形模型估计。我们表明,ECM方法能够在一系列混合先验下进行快速后验探索,并且可以纳入多个信息源。