Suppr超能文献

尼泊尔的人工智能与健康。

Artificial Intelligence and Health in Nepal.

作者信息

van Teijlingen Alexander, Tuttle Tell, Bouchachia Hamid, Sathian Brijesh, van Teijlingen Edwin

机构信息

Department of Pure and Applied Chemistry, Strathclyde University, Glasgow, UK.

Department of Computing & Informatics, Bournemouth University, Bournemouth, UK.

出版信息

Nepal J Epidemiol. 2020 Sep 30;10(3):915-918. doi: 10.3126/nje.v10i3.31649. eCollection 2020 Sep.

Abstract

The growth in information technology and computer capacity has opened up opportunities to deal with much and much larger data sets than even a decade ago. There has been a technological revolution of big data and Artificial Intelligence (AI). Perhaps many readers would immediately think about robotic surgery or self-driving cars, but there is much more to AI. This Short Communication starts with an overview of the key terms, including AI, machine learning, deep learning and Big Data. This Short Communication highlights so developments of AI in health that could benefit a low-income country like Nepal and stresses the need for Nepal's health and education systems to track such developments and apply them locally. Moreover, Nepal needs to start growing its own AI expertise to help develop national or South Asian solutions. This would require investing in local resources such as access to computer power/capacity as well as training young Nepali to work in AI.

摘要

与十年前相比,信息技术和计算机处理能力的增长为处理规模越来越大的数据集创造了机会。大数据和人工智能(AI)引发了一场技术革命。或许许多读者会立刻想到机器人手术或自动驾驶汽车,但人工智能的应用远不止于此。本短文首先概述一些关键术语,包括人工智能、机器学习、深度学习和大数据。本短文着重介绍人工智能在医疗领域的一些发展,这些发展可能会使尼泊尔这样的低收入国家受益,并强调尼泊尔的卫生和教育系统有必要追踪这些发展并在当地加以应用。此外,尼泊尔需要开始培养自己的人工智能专业人才,以帮助开发适用于本国或南亚地区的解决方案。这将需要对本地资源进行投资,例如提供计算机处理能力,以及培训年轻的尼泊尔人从事人工智能方面的工作。

相似文献

1
Artificial Intelligence and Health in Nepal.
Nepal J Epidemiol. 2020 Sep 30;10(3):915-918. doi: 10.3126/nje.v10i3.31649. eCollection 2020 Sep.
2
Artificial Intelligence and Machine Learning in Radiology: Opportunities, Challenges, Pitfalls, and Criteria for Success.
J Am Coll Radiol. 2018 Mar;15(3 Pt B):504-508. doi: 10.1016/j.jacr.2017.12.026. Epub 2018 Feb 4.
3
Artificial intelligence technologies and compassion in healthcare: A systematic scoping review.
Front Psychol. 2023 Jan 17;13:971044. doi: 10.3389/fpsyg.2022.971044. eCollection 2022.
5
Applications of Artificial Intelligence in Cardiology. The Future is Already Here.
Rev Esp Cardiol (Engl Ed). 2019 Dec;72(12):1065-1075. doi: 10.1016/j.rec.2019.05.014. Epub 2019 Oct 12.
6
Africa's readiness for artificial intelligence in clinical radiotherapy delivery: Medical physicists to lead the way.
Phys Med. 2023 Sep;113:102653. doi: 10.1016/j.ejmp.2023.102653. Epub 2023 Aug 14.
7
Artificial Intelligence and Technology Collaboratories: Innovating aging research and Alzheimer's care.
Alzheimers Dement. 2024 Apr;20(4):3074-3079. doi: 10.1002/alz.13710. Epub 2024 Feb 7.
8
Artificial Intelligence in the Diagnosis of Oral Diseases: Applications and Pitfalls.
Diagnostics (Basel). 2022 Apr 19;12(5):1029. doi: 10.3390/diagnostics12051029.
9
[Embracing the Era of Artificial Intelligence: Innovation and Preparation in Nursing Education].
Hu Li Za Zhi. 2024 Apr;71(2):4-5. doi: 10.6224/JN.202404_71(2).01.

引用本文的文献

2
Undergraduate Medical Students' and Interns' Knowledge and Perception of Artificial Intelligence in Medicine.
Adv Med Educ Pract. 2022 Aug 23;13:927-937. doi: 10.2147/AMEP.S368519. eCollection 2022.
3
Is Robotics the real game changer for Urological cancer care during COVID-19 crisis?
Nepal J Epidemiol. 2021 Jun 30;11(2):988-993. doi: 10.3126/nje.v11i2.38133. eCollection 2021 Jun.
4
COVID-19 and Artificial Intelligence: the pandemic pacifier.
Nepal J Epidemiol. 2020 Dec 31;10(4):919-922. doi: 10.3126/nje.v10i4.33334. eCollection 2020 Dec.

本文引用的文献

1
Tracking COVID-19 using online search.
NPJ Digit Med. 2021 Feb 8;4(1):17. doi: 10.1038/s41746-021-00384-w.
2
Time to reality check the promises of machine learning-powered precision medicine.
Lancet Digit Health. 2020 Dec;2(12):e677-e680. doi: 10.1016/S2589-7500(20)30200-4. Epub 2020 Sep 16.
3
Guiding ultrasound image capture with artificial intelligence.
Lancet. 2020 Sep 12;396(10253):749. doi: 10.1016/S0140-6736(20)31875-4.
4
Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI extension.
Nat Med. 2020 Sep;26(9):1351-1363. doi: 10.1038/s41591-020-1037-7. Epub 2020 Sep 9.
6
Artificial intelligence and dermatology: opportunities, challenges, and future directions.
Semin Cutan Med Surg. 2019 Mar 1;38(1):E31-37. doi: 10.12788/j.sder.2019..
7
Global prevalence of diabetic retinopathy: protocol for a systematic review and meta-analysis.
BMJ Open. 2019 Mar 3;9(3):e022188. doi: 10.1136/bmjopen-2018-022188.
8
An overview of deep learning in medical imaging focusing on MRI.
Z Med Phys. 2019 May;29(2):102-127. doi: 10.1016/j.zemedi.2018.11.002. Epub 2018 Dec 13.
9
Machine Learning for Medical Imaging.
Radiographics. 2017 Mar-Apr;37(2):505-515. doi: 10.1148/rg.2017160130. Epub 2017 Feb 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验