Department of Mechatronics Engineering, Air University, Islamabad, Pakistan.
Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
J Neural Eng. 2020 Oct 15;17(5):056025. doi: 10.1088/1741-2552/abb417.
In this paper, a novel methodology for feature extraction to enhance classification accuracy of functional near-infrared spectroscopy (fNIRS)-based two-class and three-class brain-computer interface (BCI) is presented.
Novel features are extracted using vector-based phase analysis method. Changes in oxygenated [Formula: see text] and de-oxygenated [Formula: see text]) haemoglobin are used to calculate four novel features: change in cerebral blood volume ([Formula: see text]), change in cerebral oxygen exchange ([Formula: see text]), vector magnitude (|L|) and angle (k). [Formula: see text] is the sum and [Formula: see text] is difference of [Formula: see text] and [Formula: see text], whereas |L| is magnitude and k is angle of vector. fNIRS signals of seven healthy subjects, corresponding to left-hand index finger tapping (LFT), right-hand index finger tapping (RFT) and rest are acquired from motor cortex using multi-channel continuous-wave imaging system. After removing physiological and instrumental noises from the acquired signals, the four novel features are calculated. For validation, conventional temporal, spatial and spatiotemporal features; mean, peak, slope, variance, kurtosis and skewness are also calculated using [Formula: see text] and[Formula: see text]. All possible two-feature and three-feature combinations of the novel and conventional features are then used to classify two-class (LFT vs RFT) and three-class (LFT vs RFT vs rest) fNIRS-BCI using linear discriminant analysis.
Results demonstrate that combination of four novel features yields significantly higher average classification accuracies of 98.7 ± 1.0% and 85.4 ± 1.4% as compared to 68.7 ± 6.9% and 53.6 ± 10.6% using conventional features for two-class and three-class problem, respectively. Validation of proposed method on an open access database containing RFT, LFT and dominant side foot tapping tasks for 30 subjects also shows improvement in average classification accuracies for two-class and three-class fNIRS-BCIs.
This study provides a step forward in improving the classification accuracies of state-of-the-art fNIRS-BCIs by showing significant improvement in classification accuracies of two-class and three-class fNIRS-BCIs using novel features extracted by vector-based phase analysis.
本文提出了一种新的特征提取方法,用于提高基于近红外光谱(fNIRS)的二分类和三分类脑机接口(BCI)的分类准确性。
使用基于向量的相位分析方法提取新特征。利用含氧[Formula: see text]和去氧[Formula: see text]血红蛋白的变化,计算出四个新特征:脑血容量变化([Formula: see text])、脑氧交换变化([Formula: see text])、向量幅度(|L|)和角度(k)。[Formula: see text]是[Formula: see text]和[Formula: see text]的和,[Formula: see text]是[Formula: see text]和[Formula: see text]的差,而|L|是向量的幅度,k 是向量的角度。使用多通道连续波成像系统从运动皮层采集了 7 名健康受试者的左手食指敲击(LFT)、右手食指敲击(RFT)和休息时的 fNIRS 信号。从采集的信号中去除生理和仪器噪声后,计算出四个新特征。为了验证,使用[Formula: see text]和[Formula: see text]计算了常规的时间、空间和时空特征,以及均值、峰值、斜率、方差、峰度和偏度。然后,使用新的和常规的特征的所有可能的双特征和三特征组合,使用线性判别分析对二分类(LFT 与 RFT)和三分类(LFT 与 RFT 与休息)fNIRS-BCI 进行分类。
结果表明,与使用常规特征相比,新特征组合的平均分类准确率分别提高了 98.7±1.0%和 85.4±1.4%,用于二分类和三分类问题;在一个包含 30 名受试者的 RFT、LFT 和优势侧脚敲击任务的开放获取数据库中对所提出方法的验证也表明,二分类和三分类 fNIRS-BCI 的平均分类准确率有所提高。
这项研究通过使用基于向量的相位分析提取的新特征,显著提高了二分类和三分类 fNIRS-BCI 的分类准确率,为提高最先进的 fNIRS-BCI 的分类准确率迈出了一步。