Suppr超能文献

耐替唑酮金黄色葡萄球菌 rpoB 中新型替加环素耐药突变的体外连续传代鉴定。

Identification of a novel tedizolid resistance mutation in rpoB of MRSA after in vitro serial passage.

机构信息

Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, USA.

Department of Laboratory Medicine, School of Medicine, University of Washington, Seattle, WA, USA.

出版信息

J Antimicrob Chemother. 2021 Jan 19;76(2):292-296. doi: 10.1093/jac/dkaa422.

Abstract

OBJECTIVES

Tedizolid is an oxazolidinone antimicrobial with activity against Gram-positive bacteria, including MRSA. Tedizolid resistance is uncommon and tedizolid's capacity to select for cross-resistance to other antimicrobials is incompletely understood. The objective of this study was to further explore the phenotypic and genetic basis of tedizolid resistance in MRSA.

METHODS

We selected for tedizolid resistance in an MRSA laboratory strain, N315, by serial passage until an isolate with an MIC ≥1 log2 dilution above the breakpoint for resistance (≥2 mg/L) was recovered. This isolate was subjected to WGS and susceptibility to a panel of related and unrelated antimicrobials was tested in order to determine cross-resistance. Homology modelling was performed to evaluate the potential impact of the mutation on target protein function.

RESULTS

After 10 days of serial passage we recovered a phenotypically stable mutant with a tedizolid MIC of 4 mg/L. WGS revealed only one single nucleotide variant (A1345G) in rpoB, corresponding to amino acid substitution D449N. MICs of linezolid, chloramphenicol, retapamulin and quinupristin/dalfopristin increased by ≥2 log2 dilutions, suggesting the emergence of the so-called 'PhLOPSa' resistance phenotype. Susceptibility to other drugs, including rifampicin, was largely unchanged. Homology models revealed that the mutated residue of RNA polymerase would be unlikely to directly affect oxazolidinone action.

CONCLUSIONS

To the best of our knowledge, this is the first time that an rpoB mutation has been implicated in resistance to PhLOPSa antimicrobials. The mechanism of resistance remains unclear, but is likely indirect, involving σ-factor binding or other alterations in transcriptional regulation.

摘要

目的

替加环素是一种具有抗革兰氏阳性菌活性的噁唑烷酮类抗菌药物,包括耐甲氧西林金黄色葡萄球菌(MRSA)。替加环素耐药较为罕见,其对其他抗菌药物产生交叉耐药的能力尚不完全清楚。本研究旨在进一步探索 MRSA 中替加环素耐药的表型和遗传基础。

方法

我们通过连续传代选择 MRSA 实验室菌株 N315 中的替加环素耐药性,直到恢复到 MIC 高于耐药折点(≥2mg/L)的 1 个对数稀释度以上的分离株。对该分离株进行 WGS 分析,并检测了一系列相关和不相关的抗菌药物的敏感性,以确定交叉耐药性。进行同源建模以评估突变对靶蛋白功能的潜在影响。

结果

经过 10 天的连续传代,我们恢复了一株表型稳定的突变体,其替加环素 MIC 为 4mg/L。WGS 仅在 rpoB 中发现一个单核苷酸变异(A1345G),对应于氨基酸取代 D449N。利奈唑胺、氯霉素、瑞他帕林和奎奴普汀/达福普汀的 MIC 增加了≥2 个对数稀释度,提示出现了所谓的“PhLOPSa”耐药表型。对其他药物(包括利福平)的敏感性基本不变。同源模型显示,RNA 聚合酶的突变残基不太可能直接影响噁唑烷酮类药物的作用。

结论

据我们所知,这是首次报道 rpoB 突变与 PhLOPSa 类抗菌药物耐药有关。耐药机制尚不清楚,但可能是间接的,涉及σ因子结合或转录调控的其他改变。

相似文献

1
Identification of a novel tedizolid resistance mutation in rpoB of MRSA after in vitro serial passage.
J Antimicrob Chemother. 2021 Jan 19;76(2):292-296. doi: 10.1093/jac/dkaa422.
3
6
Comment on: Identification of a novel tedizolid resistance mutation in rpoB of MRSA after in vitro serial passage.
J Antimicrob Chemother. 2022 Dec 23;78(1):317-318. doi: 10.1093/jac/dkac397.
7
Early experience with tedizolid: clinical efficacy, pharmacodynamics, and resistance.
Pharmacotherapy. 2014 Nov;34(11):1198-208. doi: 10.1002/phar.1491. Epub 2014 Sep 30.

引用本文的文献

1
Resistance mechanisms and tedizolid susceptibility in clinical isolates of linezolid-resistant bacteria in Japan.
JAC Antimicrob Resist. 2025 Jun 3;7(3):dlaf097. doi: 10.1093/jacamr/dlaf097. eCollection 2025 Jun.
2
Identification of genetic mutations conferring tedizolid resistance in MRSA mutants.
Eur J Clin Microbiol Infect Dis. 2025 May 13. doi: 10.1007/s10096-025-05157-x.
3
In Vitro Resistance-Predicting Studies and In Vitro Resistance-Related Parameters-A Hit-to-Lead Perspective.
Pharmaceuticals (Basel). 2024 Aug 15;17(8):1068. doi: 10.3390/ph17081068.
4
Differences in oxazolidinone resistance mechanisms and small colony variants emergence of induced in an resistance development model.
Emerg Microbes Infect. 2024 Dec;13(1):2292077. doi: 10.1080/22221751.2023.2292077. Epub 2024 Feb 6.
5
Staph wars: the antibiotic pipeline strikes back.
Microbiology (Reading). 2023 Sep;169(9). doi: 10.1099/mic.0.001387.
6
Molecular Basis of Non-β-Lactam Antibiotics Resistance in .
Antibiotics (Basel). 2022 Oct 8;11(10):1378. doi: 10.3390/antibiotics11101378.
7
Molecular Mechanisms of Drug Resistance in .
Int J Mol Sci. 2022 Jul 22;23(15):8088. doi: 10.3390/ijms23158088.

本文引用的文献

4
Evaluation of the template-based modeling in CASP12.
Proteins. 2018 Mar;86 Suppl 1(Suppl 1):321-334. doi: 10.1002/prot.25425. Epub 2017 Dec 4.
5
Structure of RNA polymerase bound to ribosomal 30S subunit.
Elife. 2017 Oct 13;6:e28560. doi: 10.7554/eLife.28560.
6
Architecture of a transcribing-translating expressome.
Science. 2017 Apr 14;356(6334):194-197. doi: 10.1126/science.aal3059.
7
Presence of the optrA Gene in Methicillin-Resistant Staphylococcus sciuri of Porcine Origin.
Antimicrob Agents Chemother. 2016 Nov 21;60(12):7200-7205. doi: 10.1128/AAC.01591-16. Print 2016 Dec.
8
Protein Structure and Function Prediction Using I-TASSER.
Curr Protoc Bioinformatics. 2015 Dec 17;52:5.8.1-5.8.15. doi: 10.1002/0471250953.bi0508s52.
9
Structure of a bacterial RNA polymerase holoenzyme open promoter complex.
Elife. 2015 Sep 8;4:e08504. doi: 10.7554/eLife.08504.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验