Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK.
Department of Mathematics, FNSPE, Czech Technical University in Prague, Trojanova 13, 120 00, Prague, Czech Republic.
Bull Math Biol. 2020 Oct 15;82(10):136. doi: 10.1007/s11538-020-00809-9.
Reaction-diffusion processes across layered media arise in several scientific domains such as pattern-forming E. coli on agar substrates, epidermal-mesenchymal coupling in development, and symmetry-breaking in cell polarization. We develop a modeling framework for bilayer reaction-diffusion systems and relate it to a range of existing models. We derive conditions for diffusion-driven instability of a spatially homogeneous equilibrium analogous to the classical conditions for a Turing instability in the simplest nontrivial setting where one domain has a standard reaction-diffusion system, and the other permits only diffusion. Due to the transverse coupling between these two regions, standard techniques for computing eigenfunctions of the Laplacian cannot be applied, and so we propose an alternative method to compute the dispersion relation directly. We compare instability conditions with full numerical simulations to demonstrate impacts of the geometry and coupling parameters on patterning, and explore various experimentally relevant asymptotic regimes. In the regime where the first domain is suitably thin, we recover a simple modulation of the standard Turing conditions, and find that often the broad impact of the diffusion-only domain is to reduce the ability of the system to form patterns. We also demonstrate complex impacts of this coupling on pattern formation. For instance, we exhibit non-monotonicity of pattern-forming instabilities with respect to geometric and coupling parameters, and highlight an instability from a nontrivial interaction between kinetics in one domain and diffusion in the other. These results are valuable for informing design choices in applications such as synthetic engineering of Turing patterns, but also for understanding the role of stratified media in modulating pattern-forming processes in developmental biology and beyond.
层状介质中的反应-扩散过程出现在多个科学领域,例如琼脂基质上的模式形成大肠杆菌、发育中的表皮-间充质耦合以及细胞极化中的对称破缺。我们为双层反应-扩散系统开发了一个建模框架,并将其与一系列现有模型相关联。我们推导出类似于经典 Turing 不稳定性条件的扩散驱动空间均匀平衡失稳条件,在最简单的非平凡设置中,一个域具有标准的反应-扩散系统,而另一个域只允许扩散。由于这两个区域之间的横向耦合,不能应用标准技术来计算拉普拉斯算子的特征函数,因此我们提出了一种替代方法来直接计算色散关系。我们将不稳定性条件与全数值模拟进行比较,以演示几何形状和耦合参数对图案形成的影响,并探索各种与实验相关的渐近状态。在第一个域适当薄的情况下,我们恢复了标准 Turing 条件的简单调制,并且发现扩散仅域的广泛影响通常是降低系统形成图案的能力。我们还展示了这种耦合对图案形成的复杂影响。例如,我们展示了图案形成不稳定性与几何形状和耦合参数之间的非单调关系,并强调了一个域中的动力学与另一个域中的扩散之间的非平凡相互作用引起的不稳定性。这些结果对于在合成工程 Turing 图案等应用中指导设计选择很有价值,也有助于理解分层介质在调节发育生物学和其他领域中的图案形成过程中的作用。