Suppr超能文献

采用动态压力梯度调制的全二维气相色谱飞行时间质谱法进行高通量分离的系统研究。

A systematic investigation of comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry with dynamic pressure gradient modulation for high peak capacity separations.

机构信息

Department of Chemistry, Box 351700, University of Washington, Seattle, WA, 98195, USA.

Department of Chemistry, Box 351700, University of Washington, Seattle, WA, 98195, USA.

出版信息

Anal Chim Acta. 2020 Oct 16;1134:115-124. doi: 10.1016/j.aca.2020.08.023. Epub 2020 Aug 20.

Abstract

Dynamic pressure gradient modulation (DPGM) in full modulation mode is optimized for comprehensive two-dimensional (2D) gas chromatography (GC × GC) with time-of-fight mass spectrometry (TOFMS) detection to obtain high peak capacity separations and demonstrate broad applicability for complex samples. A pulse valve introduces an auxiliary carrier gas flow at a T-union connecting the first dimension (D) column to the second dimension (D) column. At a sufficiently high auxiliary pressure (P) the D flow is temporarily stopped. Then, during each modulation period (P) the valve is turned off briefly, a period termed the pulse width (p), allowing the D effluent to essentially be reinjected onto the D column for the modulated separations. Modifications to the modulator assembly are provided to improve performance. Method optimization is demonstrated for a 116-component test mixture by tuning the P and the p. For a P = 2 s and F of 0.10 ml/min, the optimal p and initial P selected were 200 ms and 330.9 kPa (33 psig), respectively. The 30 min separation of the test mixture provided a D peak capacity of n = 330 and a D peak capacity of n = 15, hence an ideal 2D peak capacity n = n × n = 4950. Likewise, the 2D peak capacity corrected for undersampling of the D separation was 4500 and corrected for both undersampling and sampling variation via statistical overlap theory was 4090. These results provide a 2-fold improvement in peak capacity relative to the previous DPGM study in full modulation mode for GC × GC-TOFMS. The optimized conditions were applied for a variety of applications: diesel fuel, derivatized cow serum, solid phase microextraction (SPME) of coffee headspace, and SPME of river water headspace. Additionally, the fraction of 2D separation space utilized (f), as defined by the minimum convex hull method, ranged from 0.60 to 0.85. We observed that any f correction to 2D peak capacity is highly sample dependent, since all samples, except for the diesel sample, were run with the same separation conditions, and yet the f ranged from 0.60 to 0.80.

摘要

在全调制模式下,动态压力梯度调制(DPGM)经过优化,可用于全面二维(2D)气相色谱(GC×GC)与飞行时间质谱(TOFMS)联用检测,以实现高的峰容量分离,并展示对复杂样品的广泛适用性。通过在第一维(D)柱与第二维(D)柱连接的 T 型接头上引入辅助载气流,实现脉冲阀的工作。当辅助压力(P)足够高时,D 流暂时停止。然后,在每个调制周期(P)期间,阀短暂关闭一段时间,这段时间称为脉冲宽度(p),允许 D 流出物基本上重新注入到 D 柱中,从而实现调制分离。为了提高性能,对调制器组件进行了改进。通过调节 P 和 p 对 116 组分测试混合物进行了方法优化。对于 P=2 s 和 F 为 0.10 ml/min,选择的最佳 p 和初始 P 分别为 200 ms 和 330.9 kPa(33 psig)。测试混合物的 30 分钟分离提供了 D 峰容量 n=330 和 D 峰容量 n=15,因此理想的 2D 峰容量 n=n×n=4950。同样,对 D 分离的欠采样进行校正后的 2D 峰容量为 4500,通过统计重叠理论对采样和采样变化进行校正后的 2D 峰容量为 4090。与之前的 GC×GC-TOFMS 全调制模式下的 DPGM 研究相比,这些结果提供了峰容量的两倍提高。优化条件应用于各种应用:柴油燃料、衍生化牛血清、咖啡顶空固相微萃取(SPME)和河水顶空 SPME。此外,2D 分离空间利用率(f),如最小凸壳方法所定义的,范围从 0.60 到 0.85。我们观察到,对 2D 峰容量的任何 f 校正都高度依赖于样品,因为除了柴油样品外,所有样品都是在相同的分离条件下运行的,但 f 范围从 0.60 到 0.80。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验