Kalogiouri Natasa P, Aalizadeh Reza, Dasenaki Marilena E, Thomaidis Nikolaos S
Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens. Panepistimiopolis Zografou, 15 771 Athens, Greece.
Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens. Panepistimiopolis Zografou, 15 771 Athens, Greece.
Anal Chim Acta. 2020 Oct 16;1134:150-173. doi: 10.1016/j.aca.2020.07.029. Epub 2020 Jul 30.
Extra Virgin Olive Oil (EVOO), the emblematic food of the Mediterranean diet, is recognized for its nutritional value and beneficial health effects. The main authenticity issues associated with EVOO's quality involve the organoleptic properties (EVOO or defective), mislabeling of production type (organic or conventional), variety and geographical origin, and adulteration. Currently, there is an emerging need to characterize EVOOs and evaluate their genuineness. This can be achieved through the development of analytical methodologies applying advanced "omics" technologies and the investigation of EVOOs chemical fingerprints. The objective of this review is to demonstrate the analytical performance of High Resolution Mass Spectrometry (HRMS) in the field of food authenticity assessment, allowing the determination of a wide range of food constituents with exceptional identification capabilities. HRMS-based workflows used for the investigation of critical olive oil authenticity issues are presented and discussed, combined with advanced data processing, comprehensive data mining and chemometric tools. The use of unsupervised classification tools, such as Principal Component Analysis (PCA) and Hierarchical Clustering Analysis (HCA), as well as supervised classification techniques, including Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), Partial Least Square Discriminant Analysis (PLS-DA), Orthogonal Projection to Latent Structure-Discriminant Analysis (OPLS-DA), Counter Propagation Artificial Neural Networks (CP-ANNs), Self-Organizing Maps (SOMs) and Random Forest (RF) is summarized. The combination of HRMS methodologies with chemometrics improves the quality and reliability of the conclusions from experimental data (profile or fingerprints), provides valuable information suggesting potential authenticity markers and is widely applied in food authenticity studies.
特级初榨橄榄油(EVOO)是地中海饮食的标志性食物,因其营养价值和有益健康的功效而闻名。与EVOO质量相关的主要真实性问题包括感官特性(EVOO或有缺陷)、生产类型(有机或传统)的错误标注、品种和地理来源以及掺假。目前,迫切需要对EVOO进行特征描述并评估其真实性。这可以通过开发应用先进“组学”技术的分析方法以及研究EVOO的化学指纹图谱来实现。本综述的目的是展示高分辨率质谱(HRMS)在食品真实性评估领域的分析性能,从而能够以卓越的识别能力测定多种食品成分。文中介绍并讨论了用于调查关键橄榄油真实性问题的基于HRMS的工作流程,同时结合了先进的数据处理、全面的数据挖掘和化学计量工具。总结了无监督分类工具(如主成分分析(PCA)和层次聚类分析(HCA))以及有监督分类技术(包括线性判别分析(LDA)、支持向量机(SVM)、偏最小二乘判别分析(PLS - DA)、正交投影到潜在结构判别分析(OPLS - DA)、反向传播人工神经网络(CP - ANNs)、自组织映射(SOMs)和随机森林(RF))的使用情况。HRMS方法与化学计量学的结合提高了实验数据(图谱或指纹图谱)得出结论的质量和可靠性,提供了表明潜在真实性标志物的有价值信息,并广泛应用于食品真实性研究。