Baecker Daniel, Sesli Özcan, Knabl Ludwig, Huber Silke, Orth-Höller Dorothea, Gust Ronald
Department of Pharmaceutical Chemistry, Institute of Pharmacy, CMBI - Center for Molecular Biosciences Innsbruck, University of Innsbruck, CCB - Centrum for Chemistry and Biomedicine, Innrain 80-82, 6020, Innsbruck, Austria.
Department of Pharmaceutical Chemistry, Institute of Pharmacy, CMBI - Center for Molecular Biosciences Innsbruck, University of Innsbruck, CCB - Centrum for Chemistry and Biomedicine, Innrain 80-82, 6020, Innsbruck, Austria; Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Schöpfstraße 41, 6020, Innsbruck, Austria.
Eur J Med Chem. 2021 Jan 1;209:112907. doi: 10.1016/j.ejmech.2020.112907. Epub 2020 Oct 6.
The continuous increase of resistant bacteria including Staphylococcus aureus and its methicillin-resistant phenotype (MRSA) is currently one of the major challenges in medicine. Therefore, the discovery of novel lead structures for the design of drugs to fight against infections caused by these bacteria is urgently needed. In this structure-activity relationship study, metal-based drugs were investigated for the treatment of resistant pathogens. The selected Ni(II), Cu(II), Zn(II), Mn(III), and Fe(II/III) complexes differ in their salen- and salophene-type Schiff base ligands. The in vitro activity was evaluated using gram-positive (S. aureus and MRSA) and gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa). Especially the iron(III) complexes displayed promising antimicrobial effects against gram-positive bacteria, with MIC values ranging from 0.781 to 50 μg/mL. Among them, chlorido[(N,N'-bis(salicylidene)-1,2-phenylenediamine]iron(III) (6) showed the best MIC value (0.781 μg/mL = 1.93 μmol/L) against S. aureus and MRSA. Complex 6 was comparably potent as ciprofloxacin against S. aureus (0.391 μg/mL = 1.18 μmol/L) and only marginally less active than tetracycline against MRSA (0.391 μg/mL = 0.88 μmol/L). As part of the mode of action, ferroptosis was identified. Applying compound 6 (10 μg/mL), both gram-positive strains grown in PBS were killed within 20 min. This efficacy basically documents that salophene iron(III) complexes represent possible lead structures for the further development of antibacterial metal complexes.
包括金黄色葡萄球菌及其耐甲氧西林表型(MRSA)在内的耐药菌持续增加,是当前医学面临的主要挑战之一。因此,迫切需要发现用于设计对抗这些细菌引起感染的药物的新型先导结构。在这项构效关系研究中,对金属基药物治疗耐药病原体进行了研究。所选的镍(II)、铜(II)、锌(II)、锰(III)和铁(II/III)配合物在其双水杨醛缩邻苯二胺和双水杨醛缩联苯二胺型席夫碱配体方面存在差异。使用革兰氏阳性菌(金黄色葡萄球菌和MRSA)和革兰氏阴性菌(大肠杆菌和铜绿假单胞菌)评估体外活性。特别是铁(III)配合物对革兰氏阳性菌显示出有前景的抗菌效果,最低抑菌浓度(MIC)值范围为0.781至50μg/mL。其中,氯代[(N,N'-双(水杨醛)-1,2-苯二胺]铁(III)(6)对金黄色葡萄球菌和MRSA显示出最佳的MIC值(0.781μg/mL = 1.93μmol/L)。配合物6对金黄色葡萄球菌的效力与环丙沙星相当(0.391μg/mL = 1.18μmol/L),对MRSA的活性仅略低于四环素(0.391μg/mL = 0.88μmol/L)。作为作用方式的一部分,已确定存在铁死亡现象。应用化合物6(10μg/mL),在PBS中生长的两种革兰氏阳性菌株在20分钟内被杀死。这种效力基本证明双水杨醛缩联苯二胺铁(III)配合物代表了抗菌金属配合物进一步开发的可能先导结构。