Zhao Chao, Tian Shuo, Liu Qihai, Xiu Kemao, Lei Ienglam, Wang Zhong, Ma Peter X
Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109.
Department of Cardiac Surgery, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109.
Adv Funct Mater. 2020 May 20;30(21). doi: 10.1002/adfm.202000776. Epub 2020 Mar 20.
Myocardial infarction (heart attack) is the number one killer of heart patients. Existing treatments for heart attack do not address the underlying problem of cardiomyocyte (CM) loss and cannot regenerate the myocardium. Introducing exogenous cardiac cells is required for heart regeneration due to the lack of resident progenitor cells and very limited proliferative potential of adult CMs. Poor retention of transplanted cells is the critical bottleneck of heart regeneration. Here, we report the invention of a poly(l-lactic acid)--poly(ethylene glycol)--poly(N-Isopropylacrylamide) copolymer and its self-assembly into nanofibrous gelling microspheres (NF-GMS). The NF-GMS undergo thermally responsive transition to form not only a 3D hydrogel after injection in vivo, but also exhibit architectural and structural characteristics mimicking the native extracellular matrix (ECM) of nanofibrous proteins and gelling proteoglycans or polysaccharides. By integrating the ECM-mimicking features, injectable form, and the capability of maintaining 3D geometry after injection, the transplantation of hESC-derived CMs carried by NF-GMS led to a striking 10-fold graft size increase over direct CM injection in an infarcted rat model, which is the highest reported engraftment to date. Furthermore, NF-GMS carried CM transplantation dramatically reduced infarct size, enhanced integration of transplanted CMs, stimulated vascularization in the infarct zone, and led to a substantial recovery of cardiac function. The NF-GMS may also serve as advanced injectable and integrative biomaterials for cell/biomolecule delivery in a variety of biomedical applications.
心肌梗死(心脏病发作)是心脏病患者的头号杀手。现有的心脏病发作治疗方法并未解决心肌细胞(CM)丢失这一根本问题,也无法使心肌再生。由于缺乏常驻祖细胞且成年心肌细胞的增殖潜力非常有限,因此心脏再生需要引入外源性心脏细胞。移植细胞的低留存率是心脏再生的关键瓶颈。在此,我们报告了一种聚(L-乳酸)-聚(乙二醇)-聚(N-异丙基丙烯酰胺)共聚物的发明及其自组装成纳米纤维凝胶微球(NF-GMS)。NF-GMS经历热响应转变,不仅在体内注射后形成三维水凝胶,还展现出模仿纳米纤维蛋白以及凝胶蛋白聚糖或多糖的天然细胞外基质(ECM)的结构和构造特征。通过整合模仿ECM的特性、可注射形式以及注射后保持三维几何形状的能力,在梗死大鼠模型中,由NF-GMS携带的人胚胎干细胞衍生心肌细胞的移植相较于直接注射心肌细胞,移植后的细胞数量显著增加了10倍,这是迄今为止报道的最高植入率。此外,由NF-GMS携带心肌细胞进行移植可显著减小梗死面积,增强移植心肌细胞的整合,刺激梗死区域的血管生成,并使心脏功能大幅恢复。NF-GMS还可作为先进的可注射和整合性生物材料,用于多种生物医学应用中的细胞/生物分子递送。