Suppr超能文献

沙特阿拉伯使用改良的易感-暴露-感染-康复(SEIR)模型进行COVID-19建模。

COVID-19 Modeling in Saudi Arabia Using the Modified Susceptible-Exposed-Infectious-Recovered (SEIR) Model.

作者信息

Ahmad Naim

机构信息

Information Systems, King Khalid University, Abha, SAU.

出版信息

Cureus. 2020 Sep 14;12(9):e10452. doi: 10.7759/cureus.10452.

Abstract

The coronavirus disease 2019 (COVID-19) pandemic has created unprecedented healthcare emergencies across the globe. The World Health Organization (WHO) has proposed social distancing (SD) as a prudent measure to contain the pandemic and, hence, governments have been enacting lockdowns of varied nature. These lockdowns, causing economic and social strain, warrant the development of quantitative models to optimally manage the pandemic. Similarly, extensive testing aids in early detection and isolation, hence containing the spread of the pandemic. Compartment epidemiology models have been used extensively in modeling such infectious diseases. This paper attempts to utilize the modified Susceptible-Exposed-Infectious-Recovered (SEIR) model incorporating the SD, testing, and infectiousness of exposed and infectious compartments to study the COVID-19 pandemic in Saudi Arabia. Saudi Arabia has put restrictions on the movement of people in different phases to ascertain SD. Time-dependent parameters based on the timeline of restrictions and testing in Saudi Arabia have been introduced to capture SD and testing. The arrived model has been validated through statistical tests. The [Formula: see text] (R naught), basic reproduction number, value has ranged between 0.6014 and 2.7860 with an average of 1.4904 and currently holds at 0.8952. In the absence of SD and testing measures, the model predicts the threshold herd immunity to be 69.31% and [Formula: see text] value as 3.26. Further, scenario analysis has been conducted for alleviating the SD measure. The results show that early lifting of all restrictions may undo all efforts in the containment of the COVID-19 pandemic. The outcome of results will help policymakers and medical practitioners prepare better to manage the pandemic and lockdown.

摘要

2019年冠状病毒病(COVID-19)大流行在全球造成了前所未有的医疗紧急情况。世界卫生组织(WHO)建议保持社交距离(SD)作为控制大流行的一项审慎措施,因此,各国政府一直在实施各种形式的封锁。这些封锁造成了经济和社会压力,需要开发定量模型来优化管理大流行。同样,广泛检测有助于早期发现和隔离,从而控制大流行的传播。 compartment流行病学模型已被广泛用于此类传染病的建模。本文试图利用改进的易感-暴露-感染-康复(SEIR)模型,纳入社交距离、检测以及暴露和感染隔间的传染性,来研究沙特阿拉伯的COVID-19大流行。沙特阿拉伯在不同阶段对人员流动实施了限制,以确保社交距离。引入了基于沙特阿拉伯限制和检测时间表的时间相关参数,以体现社交距离和检测情况。所得模型已通过统计测试进行验证。基本再生数(R naught)的值在0.6014至2.7860之间,平均为1.4904,目前为0.8952。在没有社交距离和检测措施的情况下,该模型预测阈值群体免疫力为69.31%,R naught值为3.26。此外,还进行了情景分析以减轻社交距离措施。结果表明,过早解除所有限制可能会使控制COVID-19大流行的所有努力付诸东流。结果将有助于政策制定者和医疗从业者更好地准备应对大流行和封锁。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e29c/7557707/92040176ca54/cureus-0012-00000010452-i01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验