Suppr超能文献

利用惯性测量单元数据对跑步者表现水平进行分类并同时预测生物力学参数

Classification of runners' performance levels with concurrent prediction of biomechanical parameters using data from inertial measurement units.

作者信息

Liu Qi, Mo Shiwei, Cheung Vincent C K, Cheung Ben M F, Wang Shuotong, Chan Peter P K, Malhotra Akash, Cheung Roy T H, Chan Rosa H M

机构信息

Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR.

Division of Sports Science and Physical Education, Shenzhen University, China; Gait & Motion Analysis Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR.

出版信息

J Biomech. 2020 Nov 9;112:110072. doi: 10.1016/j.jbiomech.2020.110072. Epub 2020 Oct 8.

Abstract

Identification of runner's performance level is critical to coaching, performance enhancement and injury prevention. Machine learning techniques have been developed to measure biomechanical parameters with body-worn inertial measurement unit (IMU) sensors. However, a robust method to classify runners is still unavailable. In this paper, we developed two models to classify running performance and predict biomechanical parameters of 30 subjects. We named the models RunNet-CNN and RunNet-MLP based on their architectures: convolutional neural network (CNN) and multilayer perceptron (MLP), respectively. In addition, we examined two validation approaches, subject-wise (leave-one-subject-out) and record-wise. RunNet-MLP classified runner's performance levels with an overall accuracy of 97.1%. Our results also showed that RunNet-CNN outperformed RunNet-MLP and gradient boosting decision tree in predicting biomechanical parameters. RunNet-CNN showed good agreement (R > 0.9) with the ground-truth reference on biomechanical parameters. The prediction accuracy for the record-wise method was better than the subject-wise method regardless of biomechanical parameters or models. Our findings showed the viability of using IMUs to produce reliable prediction of runners' performance levels and biomechanical parameters.

摘要

识别跑步者的表现水平对于训练、提高成绩和预防受伤至关重要。机器学习技术已被用于通过佩戴在身体上的惯性测量单元(IMU)传感器来测量生物力学参数。然而,目前仍没有一种可靠的方法来对跑步者进行分类。在本文中,我们开发了两个模型来对30名受试者的跑步表现进行分类并预测其生物力学参数。根据其架构,我们将这两个模型分别命名为RunNet-CNN和RunNet-MLP,它们分别基于卷积神经网络(CNN)和多层感知器(MLP)。此外,我们还研究了两种验证方法,即逐个受试者(留一受试者法)和逐个记录法。RunNet-MLP对跑步者表现水平的分类总体准确率为97.1%。我们的结果还表明,在预测生物力学参数方面,RunNet-CNN的表现优于RunNet-MLP和梯度提升决策树。RunNet-CNN在生物力学参数方面与真实参考值显示出良好的一致性(R>0.9)。无论生物力学参数或模型如何,逐个记录法的预测准确率都优于逐个受试者法。我们的研究结果表明,使用IMU来可靠地预测跑步者的表现水平和生物力学参数是可行的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验