Suppr超能文献

批量自动模拟糖苷键构象的方法比较。

Comparison of Methods for Bulk Automated Simulation of Glycosidic Bond Conformations.

机构信息

N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia.

Chemical Faculty, National Research University Higher School of Economics (HSE), 20 Myasnitskaya Street, 101000 Moscow, Russia.

出版信息

Int J Mol Sci. 2020 Oct 15;21(20):7626. doi: 10.3390/ijms21207626.

Abstract

Six empirical force fields were tested for applicability to calculations for automated carbohydrate database filling. They were probed on eleven disaccharide molecules containing representative structural features from widespread classes of carbohydrates. The accuracy of each method was queried by predictions of nuclear Overhauser effects (NOEs) from conformational ensembles obtained from 50 to 100 ns molecular dynamics (MD) trajectories and their comparison to the published experimental data. Using various ranking schemes, it was concluded that explicit solvent MM3 MD yielded non-inferior NOE accuracy with newer GLYCAM-06, and ultimately PBE0-D3/def2-TZVP (Triple-Zeta Valence Polarized) Density Functional Theory (DFT) simulations. For seven of eleven molecules, at least one empirical force field with explicit solvent outperformed DFT in NOE prediction. The aggregate of characteristics (accuracy, speed, and compatibility) made MM3 dynamics with explicit solvent at 300 K the most favorable method for bulk generation of disaccharide conformation maps for massive database filling.

摘要

六种经验力场被测试其在自动化碳水化合物数据库填充计算中的适用性。它们被应用于十一种二糖分子,这些分子包含了广泛的碳水化合物类别中的代表性结构特征。通过从 50 到 100 纳秒分子动力学 (MD) 轨迹中获得的构象集合来预测核 Overhauser 效应 (NOE),并将其与已发表的实验数据进行比较,来询问每种方法的准确性。使用各种排序方案,得出结论,具有显式溶剂的 MM3 MD 在 NOE 准确性方面不逊于较新的 GLYCAM-06,最终与 PBE0-D3/def2-TZVP(三重 Zeta 价极化)密度泛函理论 (DFT) 模拟结果相当。在十一种分子中的七种中,至少有一种具有显式溶剂的经验力场在 NOE 预测方面优于 DFT。综合考虑准确性、速度和兼容性,在 300 K 下使用具有显式溶剂的 MM3 动力学是为大规模数据库填充生成二糖构象图谱的最有利方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2cf/7589101/30616f6fe39b/ijms-21-07626-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验