Institute of Human Genetics, Centre National de la Recherche Scientifique, University of Montpellier, Montpellier, France.
Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany.
Nat Genet. 2020 Nov;52(11):1151-1157. doi: 10.1038/s41588-020-00716-8. Epub 2020 Oct 19.
The genome folds into a hierarchy of three-dimensional structures within the nucleus. At the sub-megabase scale, chromosomes form topologically associating domains (TADs). However, how TADs fold in single cells is elusive. Here, we reveal TAD features inaccessible to cell population analysis by using super-resolution microscopy. TAD structures and physical insulation associated with their borders are variable between individual cells, yet chromatin intermingling is enriched within TADs compared to adjacent TADs in most cells. The spatial segregation of TADs is further exacerbated during cell differentiation. Favored interactions within TADs are regulated by cohesin and CTCF through distinct mechanisms: cohesin generates chromatin contacts and intermingling while CTCF prevents inter-TAD contacts. Furthermore, TADs are subdivided into discrete nanodomains, which persist in cells depleted of CTCF or cohesin, whereas disruption of nucleosome contacts alters their structural organization. Altogether, these results provide a physical basis for the folding of individual chromosomes at the nanoscale.
基因组在细胞核内折叠成具有三维结构的层次。在亚兆碱基尺度上,染色体形成拓扑关联结构域(TAD)。然而,TAD 在单细胞中如何折叠仍然难以捉摸。在这里,我们通过使用超分辨率显微镜揭示了细胞群体分析无法获得的 TAD 特征。TAD 结构及其边界相关的物理隔离在个体细胞之间是可变的,但与大多数细胞中的相邻 TAD 相比,TAD 内的染色质混合更为丰富。TAD 的空间分离在细胞分化过程中进一步加剧。TAD 内的有利相互作用受着丝粒蛋白和 CTCF 通过不同机制进行调节:着丝粒蛋白产生染色质接触和混合,而 CTCF 防止 TAD 之间的接触。此外,TAD 被细分为离散的纳米域,即使在耗尽 CTCF 或着丝粒蛋白的细胞中,这些纳米域仍然存在,而核小体接触的破坏则改变了它们的结构组织。总之,这些结果为单个染色体在纳米尺度上的折叠提供了物理基础。