Jana Santanu, Carlos Emanuel, Panigrahi Shrabani, Martins Rodrigo, Fortunato Elvira
CENIMAT/i3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia-Universidade Nova de Lisboa and CEMOP/Uninova, Campus de Caparica, 2829-516 Caparica, Portugal.
ACS Nano. 2020 Nov 24;14(11):14790-14797. doi: 10.1021/acsnano.0c02862. Epub 2020 Oct 20.
Organolead halide perovskites have drawn significant attention from the scientific community as one of the most attractive materials in optoelectronics, especially in the field of photovoltaics. In this study, we focus on using halide perovskites in processing thin film transistors (TFTs). Halide perovskites have high solution processability and excellent carrier transport characteristics, in particular for holes. The present work aims to fill a gap in oxide-based technology. It concerns the process of using high-stable and reliable ptype oxide-based devices to target CMOS technology (complementary metal-oxide-semiconductor). We report on a solution-processed high-performance TFT based on methylammonium lead iodide (CHNHPbI) perovskite semiconductor films, which shows promise for devices that can be simple to manufacture with high reliability, reproducibility, and excellent stability in atmospheric conditions. To achieve a highly stable perovskite semiconductor film, we introduce diethylsulfide in the perovskite precursor. The TFT shows a stable ptype behavior when operated at low voltages (≤-2 V) and has a current modulation of >10, an almost negligible hysteresis, and average saturation mobility of about 18.8 cm V s, taken over 50 devices tested (the highest one measured was ∼23.2 cm V s). This is the highest value until now reported in the literature. In addition, we demonstrate that perovskite TFTs can be fabricated at temperatures as low as 150 °C on flexible substrates with a saturation mobility of ∼11.5 cm V s. The high-performance perovskite TFT with excellent stability is a promising candidate for the next generation of p-type transistors for a plethora of low-cost electronics applications.
有机卤化铅钙钛矿作为光电子学中最具吸引力的材料之一,尤其是在光伏领域,已引起科学界的广泛关注。在本研究中,我们专注于将卤化钙钛矿用于制备薄膜晶体管(TFT)。卤化钙钛矿具有高溶液可加工性和优异的载流子传输特性,特别是对于空穴。目前的工作旨在填补基于氧化物技术的空白。它涉及使用高稳定性和可靠的p型氧化物基器件以实现CMOS技术(互补金属氧化物半导体)的过程。我们报道了一种基于甲基碘化铅(CH₃NH₃PbI₃)钙钛矿半导体薄膜的溶液法制备的高性能TFT,该TFT对于易于制造且在大气条件下具有高可靠性、可重复性和出色稳定性的器件显示出前景。为了获得高度稳定的钙钛矿半导体薄膜,我们在钙钛矿前驱体中引入了二乙硫醚。该TFT在低电压(≤ -2 V)下工作时表现出稳定的p型行为,电流调制大于10,滞后几乎可以忽略不计,在测试的50个器件中平均饱和迁移率约为18.8 cm² V⁻¹ s⁻¹(测量到的最高值约为23.2 cm² V⁻¹ s⁻¹)。这是迄今为止文献报道的最高值。此外,我们证明了钙钛矿TFT可以在低至150°C的温度下在柔性基板上制造,饱和迁移率约为11.5 cm² V⁻¹ s⁻¹。具有出色稳定性的高性能钙钛矿TFT是用于众多低成本电子应用的下一代p型晶体管的有前途的候选者。