State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
Department of Microbiology, Faculty of Life Sciences, University of Okara, Okara, 56130, Pakistan.
Microb Cell Fact. 2020 Oct 20;19(1):197. doi: 10.1186/s12934-020-01455-5.
Magnetotactic bacteria have the unique ability to synthesize magnetosomes (nano-sized magnetite or greigite crystals arranged in chain-like structures) in a variety of shapes and sizes. The chain alignment of magnetosomes enables magnetotactic bacteria to sense and orient themselves along geomagnetic fields. There is steadily increasing demand for magnetosomes in the areas of biotechnology, biomedicine, and environmental protection. Practical difficulties in cultivating magnetotactic bacteria and achieving consistent, high-yield magnetosome production under artificial environmental conditions have presented an obstacle to successful development of magnetosome applications in commercial areas. Here, we review information on magnetosome biosynthesis and strategies for enhancement of bacterial cell growth and magnetosome formation, and implications for improvement of magnetosome yield on a laboratory scale and mass-production (commercial or industrial) scale.
趋磁细菌具有合成磁小体(排列成链状结构的纳米大小的磁铁矿或陨硫铁晶体)的独特能力,其形状和大小各异。磁小体的链状排列使趋磁细菌能够沿着地磁场感知和定向。在生物技术、生物医学和环境保护领域,对磁小体的需求稳步增加。在人工环境条件下培养趋磁细菌并实现一致的高产磁小体生产方面存在实际困难,这成为成功开发商业领域磁小体应用的障碍。在这里,我们综述了磁小体生物合成的信息以及增强细菌细胞生长和磁小体形成的策略,以及对提高实验室规模和大规模生产(商业或工业)规模的磁小体产量的影响。