Suppr超能文献

基于图信号处理的化合物定量构效关系/定量构性关系模型学习方法。

Graph Signal Processing Approach to QSAR/QSPR Model Learning of Compounds.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2022 Apr;44(4):1963-1973. doi: 10.1109/TPAMI.2020.3032718. Epub 2022 Mar 4.

Abstract

Quantitative relationship between the activity/property and the structure of compound is critical in chemical applications. To learn this quantitative relationship, hundreds of molecular descriptors have been designed to describe the structure, mainly based on the properties of vertices and edges of molecular graph. However, many descriptors degenerate to the same values for different compounds with the same molecular graph, resulting in model failure. In this paper, we design a multidimensional signal for each vertex of the molecular graph to derive new descriptors with higher discriminability. We treat the new and traditional descriptors as the signals on the descriptor graph learned from the descriptor data, and enhance descriptor dissimilarity using the Laplacian filter derived from the descriptor graph. Combining these with model learning techniques, we propose a graph signal processing based approach to obtain reliable new models for learning the quantitative relationship and predicting the properties of compounds. We also provide insights from chemistry for the boiling point model. Several experiments are presented to demonstrate the validity, effectiveness and advantages of the proposed approach.

摘要

化合物的活性/性质与结构之间的定量关系在化学应用中至关重要。为了学习这种定量关系,已经设计了数百种分子描述符来描述结构,主要基于分子图的顶点和边的性质。然而,许多描述符对于具有相同分子图的不同化合物退化为相同的值,导致模型失败。在本文中,我们为分子图的每个顶点设计了多维信号,以得出具有更高可辨别性的新描述符。我们将新的和传统的描述符视为从描述符数据中学习到的描述符图上的信号,并使用从描述符图导出的拉普拉斯滤波器来增强描述符的不相似性。将这些与模型学习技术结合起来,我们提出了一种基于图信号处理的方法,以获得可靠的新模型,用于学习化合物的定量关系和预测性质。我们还从化学角度提供了沸点模型的见解。进行了多项实验,以证明所提出方法的有效性、有效性和优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验