Suppr超能文献

对呈现丝状和颗粒状形态的菌丝进行蛋白质组比较分析。

Comparative proteomic analysis of hyphae displaying filamentous and pellet morphology.

作者信息

Yin Longfei, Luo Xi, Zhang Yingying, Zheng Weilong, Yin Fengwei, Fu Yongqian

机构信息

Institute of Biomass Resources, Taizhou University, Taizhou, 318000 China.

出版信息

3 Biotech. 2020 Nov;10(11):469. doi: 10.1007/s13205-020-02458-0. Epub 2020 Oct 10.

Abstract

Industrial strains of is known for its strong ability to produce L-( +)-lactic acid, ethanol, and fumaric acid at high yields. To better understand the underlying mechanism behind the physiology of , we conducted the proteome changes between two different morphologies using two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. exhibited pellet morphology and filamentous morphology when the initial pH of the culture medium was 3.0 and 5.0, respectively. The concentration of lactic acid reached 63.5 g L in the samples containing the pellet morphology, compared to 41.5 g L produced by filamentous . Proteomic analysis indicated that expression levels of 128 proteins changed significantly. Of these, 17 protein spots were successfully identified by mass spectrometry and were deemed to be mainly involved in carbohydrate metabolism, genetic information processing, chitin metabolism, protein catabolism, protein folding, and antioxidative pathway. L-lactate dehydrogenase (RO3G_06188), enolase (RO3G_05466) and 2, 3-bisphosphoglycerate-independent phosphoglycerate mutase (RO3G_02462) were found to be upregulated, while isocitrate dehydrogenase (RO3G_13820) was downregulated in the samples with pellet morphology compared to the filamentous hyphae. These results suggested that more carbon flow was directed towards lactic acid biosynthesis in hyphae with pellet morphology.

摘要

工业菌株以其高产L-(+)-乳酸、乙醇和富马酸的强大能力而闻名。为了更好地理解其生理背后的潜在机制,我们使用二维聚丙烯酰胺凝胶电泳和质谱法研究了两种不同形态之间的蛋白质组变化。当培养基的初始pH值分别为3.0和5.0时,该菌株呈现出菌球形态和丝状形态。在含有菌球形态的样品中,乳酸浓度达到63.5 g/L,而丝状形态产生的乳酸浓度为41.5 g/L。蛋白质组分析表明,128种蛋白质的表达水平发生了显著变化。其中,17个蛋白质斑点通过质谱成功鉴定,被认为主要参与碳水化合物代谢、遗传信息处理、几丁质代谢、蛋白质分解代谢、蛋白质折叠和抗氧化途径。与丝状菌丝相比,在具有菌球形态的样品中,L-乳酸脱氢酶(RO3G_06188)、烯醇化酶(RO3G_05466)和2,3-二磷酸甘油酸非依赖性磷酸甘油酸变位酶(RO3G_02462)被发现上调,而异柠檬酸脱氢酶(RO3G_13820)下调。这些结果表明,更多的碳流导向了具有菌球形态的该菌株菌丝中的乳酸生物合成。

相似文献

1
Comparative proteomic analysis of hyphae displaying filamentous and pellet morphology.
3 Biotech. 2020 Nov;10(11):469. doi: 10.1007/s13205-020-02458-0. Epub 2020 Oct 10.
3
Optimization of L-(+)-lactic acid production using pelletized filamentous Rhizopus oryzae NRRL 395.
Appl Biochem Biotechnol. 2006 Mar;131(1-3):844-53. doi: 10.1385/ABAB:131:1-3:844.
4
Studying pellet formation of a filamentous fungus Rhizopus oryzae to enhance organic acid production.
Appl Biochem Biotechnol. 2007 Apr;137-140(1-12):689-701. doi: 10.1007/s12010-007-9089-4.
5
[Effect of ZnSO4 on L-lactic acid production by Rhizopus oryzae].
Wei Sheng Wu Xue Bao. 2013 May 4;53(5):515-20.
6
Production of L-lactic acid by Rhizopus oryzae in a bubble column fermenter.
Appl Biochem Biotechnol. 1998 Spring;70-72:323-9. doi: 10.1007/BF02920148.
7
Enhanced fumaric acid production from brewery wastewater and insight into the morphology of Rhizopus oryzae 1526.
Appl Biochem Biotechnol. 2014 Mar;172(6):2974-88. doi: 10.1007/s12010-014-0739-z. Epub 2014 Jan 28.
10
Lactic acid production from xylose by the fungus Rhizopus oryzae.
Appl Microbiol Biotechnol. 2006 Oct;72(5):861-8. doi: 10.1007/s00253-006-0379-5. Epub 2006 Mar 10.

引用本文的文献

1
Rational Proteomic Analysis of a New Domesticated x546 Producing 1,3-Propanediol.
Front Microbiol. 2021 Nov 26;12:770109. doi: 10.3389/fmicb.2021.770109. eCollection 2021.

本文引用的文献

1
Transcriptome analysis of Rhizopus oryzae in response to xylose during fumaric acid production.
Bioprocess Biosyst Eng. 2016 Aug;39(8):1267-80. doi: 10.1007/s00449-016-1605-x. Epub 2016 May 11.
2
Fungal chitinases: function, regulation, and potential roles in plant/pathogen interactions.
Curr Genet. 2016 May;62(2):243-54. doi: 10.1007/s00294-015-0530-x. Epub 2015 Nov 2.
3
Effects of pellet characteristics on L-lactic acid fermentation by R. oryzae: pellet morphology, diameter, density, and interior structure.
Appl Biochem Biotechnol. 2014 Nov;174(6):2019-30. doi: 10.1007/s12010-014-1146-1. Epub 2014 Aug 28.
4
Enhanced fumaric acid production from brewery wastewater and insight into the morphology of Rhizopus oryzae 1526.
Appl Biochem Biotechnol. 2014 Mar;172(6):2974-88. doi: 10.1007/s12010-014-0739-z. Epub 2014 Jan 28.
5
Autophagy vitalizes the pathogenicity of pathogenic fungi.
Autophagy. 2012 Oct;8(10):1415-25. doi: 10.4161/auto.21274. Epub 2012 Aug 30.
6
Metabolic engineering of Rhizopus oryzae for the production of platform chemicals.
Appl Microbiol Biotechnol. 2012 May;94(4):875-86. doi: 10.1007/s00253-012-4033-0. Epub 2012 Apr 13.
8
A novel protein Com1 is required for normal conidium morphology and full virulence in Magnaporthe oryzae.
Mol Plant Microbe Interact. 2010 Jan;23(1):112-23. doi: 10.1094/MPMI-23-1-0112.
9
Purification and characterization of a new Rhizopuspepsin from Rhizopus oryzae NBRC 4749.
J Agric Food Chem. 2009 Aug 12;57(15):6742-7. doi: 10.1021/jf8040337.
10
Genomic analysis of the basal lineage fungus Rhizopus oryzae reveals a whole-genome duplication.
PLoS Genet. 2009 Jul;5(7):e1000549. doi: 10.1371/journal.pgen.1000549. Epub 2009 Jul 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验