Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, China (J.L., X.M., J. Xiao).
Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston (A.M.S., G.L., N.V., O.Z., A.Y., C.Y.X., R.S.R., PK., M.G.S., R.K., R.S., S.D.).
Circ Res. 2021 Jan 8;128(1):e1-e23. doi: 10.1161/CIRCRESAHA.120.317244. Epub 2020 Oct 22.
Previous translational studies implicate plasma extracellular microRNA-30d (miR-30d) as a biomarker in left ventricular remodeling and clinical outcome in heart failure (HF) patients, although precise mechanisms remain obscure.
To investigate the mechanism of miR-30d-mediated cardioprotection in HF.
In rat and mouse models of ischemic HF, we show that miR-30d gain of function (genetic, lentivirus, or agomiR-mediated) improves cardiac function, decreases myocardial fibrosis, and attenuates cardiomyocyte (CM) apoptosis. Genetic or locked nucleic acid-based knock-down of miR-30d expression potentiates pathological left ventricular remodeling, with increased dysfunction, fibrosis, and cardiomyocyte death. RNA sequencing of in vitro miR-30d gain and loss of function, together with bioinformatic prediction and experimental validation in cardiac myocytes and fibroblasts, were used to identify and validate direct targets of miR-30d. miR-30d expression is selectively enriched in cardiomyocytes, induced by hypoxic stress and is acutely protective, targeting MAP4K4 (mitogen-associate protein kinase 4) to ameliorate apoptosis. Moreover, miR-30d is secreted primarily in extracellular vesicles by cardiomyocytes and inhibits fibroblast proliferation and activation by directly targeting integrin α5 in the acute phase via paracrine signaling to cardiac fibroblasts. In the chronic phase of ischemic remodeling, lower expression of miR-30d in the heart and plasma extracellular vesicles is associated with adverse remodeling in rodent models and human subjects and is linked to whole-blood expression of genes implicated in fibrosis and inflammation, consistent with observations in model systems.
These findings provide the mechanistic underpinning for the cardioprotective association of miR-30d in human HF. More broadly, our findings support an emerging paradigm involving intercellular communication of extracellular vesicle-contained miRNAs (microRNAs) to transregulate distinct signaling pathways across cell types. Functionally validated RNA biomarkers and their signaling networks may warrant further investigation as novel therapeutic targets in HF.
先前的转化研究表明,血浆细胞外 microRNA-30d(miR-30d)是心力衰竭(HF)患者左心室重构和临床结局的生物标志物,尽管确切机制尚不清楚。
研究 miR-30d 介导的 HF 心脏保护作用的机制。
在缺血性 HF 的大鼠和小鼠模型中,我们发现 miR-30d 的功能获得(遗传、慢病毒或 agomiR 介导)可改善心功能、减少心肌纤维化并减轻心肌细胞(CM)凋亡。miR-30d 表达的遗传或锁核酸(LNA)敲低增强病理性左心室重构,导致功能障碍、纤维化和心肌细胞死亡增加。体外 miR-30d 功能获得和丧失的 RNA 测序,以及心脏成肌细胞和成纤维细胞的生物信息预测和实验验证,用于鉴定和验证 miR-30d 的直接靶标。miR-30d 表达选择性地富集在心肌细胞中,由缺氧应激诱导,并具有急性保护作用,通过靶向丝裂原激活蛋白激酶 4(MAP4K4)来改善细胞凋亡。此外,miR-30d 主要由心肌细胞通过细胞外囊泡分泌,并通过旁分泌信号在急性阶段直接靶向整合素 α5 抑制成纤维细胞增殖和激活。在缺血性重构的慢性阶段,心脏和血浆细胞外囊泡中 miR-30d 的低表达与啮齿动物模型和人类受试者的不良重构相关,并与纤维化和炎症相关基因的全血表达相关,与模型系统中的观察结果一致。
这些发现为 miR-30d 在人类 HF 中的心脏保护作用提供了机制基础。更广泛地说,我们的发现支持一种新兴的范式,即细胞外囊泡包含的 microRNAs(miRNAs)的细胞间通讯以跨细胞类型调节不同的信号通路。功能验证的 RNA 生物标志物及其信号网络可能需要进一步研究,作为 HF 的新型治疗靶点。