Suppr超能文献

基于机器学习的模式识别可识别油脂掺假和食用油混合物。

Pattern recognition based on machine learning identifies oil adulteration and edible oil mixtures.

机构信息

Wilmar International Limited, WIL@NUS Corporate Lab, Center for Translational Medicine, 14 Medical Drive, Singapore, Singapore.

Yihai Kerry Arawana Oils, Grains & Food Co., Ltd, Arawana Building, No. 1379 Bocheng Road, Pudong New District, Shanghai, China.

出版信息

Nat Commun. 2020 Oct 23;11(1):5353. doi: 10.1038/s41467-020-19137-6.

Abstract

Previous studies have shown that each edible oil type has its own characteristic fatty acid profile; however, no method has yet been described allowing the identification of oil types simply based on this characteristic. Moreover, the fatty acid profile of a specific oil type can be mimicked by a mixture of 2 or more oil types. This has led to fraudulent oil adulteration and intentional mislabeling of edible oils threatening food safety and endangering public health. Here, we present a machine learning method to uncover fatty acid patterns discriminative for ten different plant oil types and their intra-variability. We also describe a supervised end-to-end learning method that can be generalized to oil composition of any given mixtures. Trained on a large number of simulated oil mixtures, independent test dataset validation demonstrates that the model has a 50 percentile absolute error between 1.4-1.8% and a 90 percentile error of 4-5.4% for any 3-way mixtures of the ten oil types. The deep learning model can also be further refined with on-line training. Because oil-producing plants have diverse geographical origins and hence slightly varying fatty acid profiles, an online-training method provides also a way to capture useful knowledge presently unavailable. Our method allows the ability to control product quality, determining the fair price of purchased oils and in-turn allowing health-conscious consumers the future of accurate labeling.

摘要

先前的研究表明,每种食用油都有其独特的脂肪酸组成;然而,目前还没有一种方法可以仅根据这一特征来识别油的类型。此外,特定油类的脂肪酸组成可以通过两种或更多种油的混合物来模拟。这导致了食用油的欺诈性掺假和故意标签错误,威胁到食品安全,危及公众健康。在这里,我们提出了一种机器学习方法,可以揭示十种不同植物油及其变异性的脂肪酸模式。我们还描述了一种监督端到端的学习方法,该方法可以推广到任何给定混合物的油组成。在大量模拟油混合物上进行训练,独立测试数据集的验证表明,该模型对于十种油的任意三种混合物的 50%百分位绝对误差在 1.4-1.8%之间,90%百分位误差在 4-5.4%之间。该深度学习模型还可以通过在线训练进一步优化。由于产油植物的地理起源不同,因此脂肪酸的组成也略有不同,在线训练方法还提供了一种获取当前无法获取的有用知识的途径。我们的方法允许控制产品质量,确定购买油的公平价格,从而使有健康意识的消费者能够实现准确的标签。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9175/7584611/982665d1c281/41467_2020_19137_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验