Fleurbaey Hélène, Yi Hongming, Adkins Erin M, Fleisher Adam J, Hodges Joseph T
Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA.
J Quant Spectrosc Radiat Transf. 2020;252. doi: https://doi.org/10.1016/j.jqsrt.2020.107104.
The = 2.06 μm absorption band of CO is widely used for the remote sensing of atmospheric carbon dioxide, making it relevant to many important top-down measurements of carbon flux. The forward models used in the retrieval algorithms employed in these measurements require increasingly accurate line intensity and line shape data from which absorption cross-sections can be computed. To overcome accuracy limitations of existing line lists, we used frequency-stabilized cavity ring-down spectroscopy to measure 39 transitions in the CO absorption band. The line intensities were measured with an estimated relative combined standard uncertainty of = 0.08 %. We predicted the -dependence of the measured intensities using two theoretical models: a one-dimensional spectroscopic model with Herman-Wallis rotation-vibration corrections, and a line-by-line dipole moment surface model [Zak et al. JQSRT 2016;177:31-42]. For the second approach, we fit only a single factor to rescale the theoretical integrated band intensity to be consistent with the measured intensities. We find that the latter approach yields an equally adequate representation of the fitted -dependent intensity data and provides the most physically general representation of the results. Our recommended value for the integrated band intensity equal to 7.183 × 10 cm molecule ± 6 × 10 cm molecule is based on the rescaled model and corresponds to a fitted scale factor of 1.0069 ± 0.0002. Comparisons of literature intensity values to our results reveal systematic deviations ranging from -1.16 % to +0.33 %.
一氧化碳在2.06微米处的吸收带被广泛用于大气二氧化碳的遥感监测,这使其与许多重要的碳通量自上而下测量相关。这些测量中使用的反演算法所采用的正向模型需要越来越精确的谱线强度和线型数据,以便能够计算吸收截面。为了克服现有谱线列表的精度限制,我们使用频率稳定的腔衰荡光谱法测量了一氧化碳吸收带中的39条跃迁谱线。测量得到的谱线强度的估计相对合成标准不确定度为 = 0.08%。我们使用两种理论模型预测了测量强度随温度的变化:一种是带有赫尔曼 - 沃利斯旋转 - 振动校正的一维光谱模型,另一种是逐线偶极矩表面模型[扎克等人,《量子光谱与辐射传输杂志》2016年;177:31 - 42]。对于第二种方法,我们仅拟合一个单一因子,以重新调整理论积分带强度,使其与测量强度一致。我们发现,后一种方法能够同样充分地表示拟合的随温度变化的强度数据,并提供了结果最具物理普遍性的表示。我们推荐的积分带强度值为7.183×10⁻²² 厘米²/分子 ± 6×10⁻²³ 厘米²/分子,该值基于重新调整后的模型,对应的拟合比例因子为1.0069 ± 0.0002。将文献中的强度值与我们的结果进行比较,发现系统偏差范围为 -1.16%至 +0.33%。