Suppr超能文献

生物催化和反应的生物学概念:赋予生物启发。

Biological concepts for catalysis and reactivity: empowering bioinspiration.

机构信息

Université de Strasbourg, Institut de Chimie, UMR CNRS 7177, 67000 Strasbourg, France.

出版信息

Chem Soc Rev. 2020 Dec 7;49(23):8840-8867. doi: 10.1039/d0cs00914h. Epub 2020 Oct 27.

Abstract

Biological systems provide attractive reactivity blueprints for the design of challenging chemical transformations. Emulating the operating mode of natural systems may however not be so easy and direct translation of structural observations does not always afford the anticipated efficiency. Metalloenzymes rely on earth-abundant metals to perform an incredibly wide range of chemical transformations. To do so, enzymes in general have evolved tools and tricks to enable control of such reactivity. The underlying concepts related to these tools are usually well-known to enzymologists and bio(inorganic) chemists but may be a little less familiar to organometallic chemists. So far, the field of bioinspired catalysis has greatly focused on the coordination sphere and electronic effects for the design of functional enzyme models but might benefit from a paradigm shift related to recent findings in biological systems. The goal of this review is to bring these fields closer together as this could likely result in the development of a new generation of highly efficient bioinspired systems. This contribution covers the fields of redox-active ligands, entatic state reactivity, energy conservation through electron bifurcation, and quantum tunneling for C-H activation.

摘要

生物体系为设计具有挑战性的化学反应提供了有吸引力的反应蓝图。然而,模仿自然体系的工作模式可能并不那么容易,结构观察的直接转化并不总是能提供预期的效率。金属酶依赖于丰富的地球金属来进行范围广泛的化学反应。为了实现这一点,通常酶已经进化出了工具和技巧来控制这种反应性。这些工具相关的基本概念通常为酶学家和生物(无机)化学家所熟知,但对于有机金属化学家来说可能不太熟悉。到目前为止,生物启发催化领域主要集中在配位场和电子效应对功能酶模型设计的影响,但可能受益于与生物系统最近发现相关的范式转变。这篇综述的目的是将这些领域更紧密地结合在一起,因为这可能导致新一代高效的生物启发系统的发展。这篇综述涵盖了氧化还原活性配体、能态势反应、通过电子分裂进行能量守恒以及 C-H 活化的量子隧穿等领域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验