Reveret Lionel, Chapelle Sylvain, Quaine Franck, Legreneur Pierre
LJK, University Grenoble Alpes, CNRS, INRIA, Montbonnot-Saint-Martin, France.
FFME, Fédération Française d'Escalade et de Montagne, Paris, France.
Front Psychol. 2020 Sep 28;11:2188. doi: 10.3389/fpsyg.2020.02188. eCollection 2020.
Speed climbing involves an optimization of the velocity of the ascent and the trajectory path during performance. Consequently, any amount of energy spent in the two other directions than vertical, namely the lateral direction and the direction perpendicular to the wall plane, is a potential loss of performance. To assess this principle, we present a study on 3D motion analysis and its 3D visualization for a subject during a speed climbing performance. The fundamentals of geometrical measurement in 3D require to integrate multiple 2D cues, at least two, in order to extract 3D information. First results with two drones following an athlete's ascent show that a 3D velocity profile can be provided from the tracking of a marker on the harness, pointing critical phases in the ascent where the vertical speed is not dominant any more. We further investigate 3D motion of full body using markerless video-based tracking. Our approach is based on a full body 3D avatar model of the climber, represented as a 3D mesh. This model and its deformation are learned in a laboratory studio. The learning needs to be done only once. Result is a manifold embedding of the 3D mesh and its deformations, which can be used afterwards to perform registration onto video of performance of speed climbing. The results of the tracking is an inference of the 3D mesh aligned onto videos of speed climbing performance. From this 3D mesh, we deduce an estimation of the center of mass (COM). We show that this estimation from 3D mesh differs from the usual approximation of the COM as a marker on the harness. In particular, the 3D mesh COM takes into account the whole body movement such as the influence of the limbs which is not detected by a marker on the harness.
速度攀岩涉及在攀爬过程中对上升速度和轨迹路径进行优化。因此,在垂直方向以外的另外两个方向,即横向方向和垂直于墙面的方向上所消耗的任何能量,都可能导致成绩下降。为了评估这一原理,我们展示了一项针对一名受试者在速度攀岩过程中的三维运动分析及其三维可视化的研究。三维几何测量的基本原理要求整合多个二维线索,至少两个,以便提取三维信息。两架无人机跟踪一名运动员攀爬的初步结果表明,可以通过跟踪安全带上的一个标记来提供三维速度剖面,从而指出上升过程中垂直速度不再占主导地位的关键阶段。我们进一步使用基于无标记视频的跟踪方法研究全身的三维运动。我们的方法基于攀岩者的全身三维虚拟模型,该模型表示为一个三维网格。这个模型及其变形是在实验室工作室中学习得到的。这种学习只需要进行一次。结果是三维网格及其变形的流形嵌入,之后可用于在速度攀岩表演视频上进行配准。跟踪结果是对与速度攀岩表演视频对齐的三维网格的推断。从这个三维网格中,我们推导出质心(COM)的估计值。我们表明,从三维网格得到的这个估计值与通常将安全带上的一个标记作为质心的近似值不同。特别是,三维网格质心考虑了全身运动,比如四肢的影响,而安全带上的标记无法检测到这些影响。