Suppr超能文献

用于图形模型选择的高效贝叶斯正则化

Efficient Bayesian Regularization for Graphical Model Selection.

作者信息

Kundu Suprateek, Mallick Bani K, Baladandayuthapan Veera

机构信息

Department of Biostatistics & Bioinformatics, Emory University, 1518 Clifton Road, Atlanta, Georgia 30322, U.S.A.

Department of Statistics, Texas A&M University, 3143 TAMU, College Station, Texas 77843-3143, U.S.A.

出版信息

Bayesian Anal. 2019 Jun;14(2):449-476. doi: 10.1214/17-ba1086. Epub 2018 Jul 11.

Abstract

There has been an intense development in the Bayesian graphical model literature over the past decade; however, most of the existing methods are restricted to moderate dimensions. We propose a novel graphical model selection approach for large dimensional settings where the dimension increases with the sample size, by decoupling model fitting and covariance selection. First, a full model based on a complete graph is fit under a novel class of mixtures of inverse-Wishart priors, which induce shrinkage on the precision matrix under an equivalence with Cholesky-based regularization, while enabling conjugate updates. Subsequently, a post-fitting model selection step uses penalized joint credible regions to perform model selection. This allows our methods to be computationally feasible for large dimensional settings using a combination of straightforward Gibbs samplers and efficient post-fitting inferences. Theoretical guarantees in terms of selection consistency are also established. Simulations show that the proposed approach compares favorably with competing methods, both in terms of accuracy metrics and computation times. We apply this approach to a cancer genomics data example.

摘要

在过去十年中,贝叶斯图形模型文献有了深入发展;然而,现有的大多数方法都局限于中等维度。我们提出了一种新颖的图形模型选择方法,用于高维情形,即维度随样本量增加的情况,通过将模型拟合与协方差选择解耦来实现。首先,基于一个完全图的全模型在一类新颖的逆 Wishart 先验混合下进行拟合,这种先验在与基于 Cholesky 的正则化等价的情况下,会在精度矩阵上产生收缩,同时允许共轭更新。随后,一个拟合后模型选择步骤使用惩罚联合可信区域来进行模型选择。这使得我们的方法通过结合简单的 Gibbs 采样器和高效的拟合后推断,在高维情形下计算上可行。还建立了关于选择一致性的理论保证。模拟表明所提出的方法在准确性指标和计算时间方面都优于竞争方法。我们将此方法应用于一个癌症基因组学数据示例。

相似文献

1
Efficient Bayesian Regularization for Graphical Model Selection.
Bayesian Anal. 2019 Jun;14(2):449-476. doi: 10.1214/17-ba1086. Epub 2018 Jul 11.
2
Consistent high-dimensional Bayesian variable selection via penalized credible regions.
J Am Stat Assoc. 2012 Dec 21;107(500):1610-1624. doi: 10.1080/01621459.2012.716344. Epub 2012 Aug 14.
3
The Bayesian Covariance Lasso.
Stat Interface. 2013 Apr 1;6(2):243-259. doi: 10.4310/sii.2013.v6.n2.a8.
4
Regression-Based Bayesian Estimation and Structure Learning for Nonparanormal Graphical Models.
Stat Anal Data Min. 2022 Oct;15(5):611-629. doi: 10.1002/sam.11576. Epub 2022 Feb 28.
5
Bayesian sparse graphical models and their mixtures.
Stat. 2014 Jan 1;3(1):109-125. doi: 10.1002/sta4.49.
6
Bayesian graph selection consistency under model misspecification.
Bernoulli (Andover). 2021 Feb;27(1):637-672. doi: 10.3150/20-BEJ1253. Epub 2020 Nov 20.
7
Joint high-dimensional Bayesian variable and covariance selection with an application to eQTL analysis.
Biometrics. 2013 Jun;69(2):447-57. doi: 10.1111/biom.12021. Epub 2013 Apr 22.
8
Dirichlet-Laplace priors for optimal shrinkage.
J Am Stat Assoc. 2015 Dec 1;110(512):1479-1490. doi: 10.1080/01621459.2014.960967. Epub 2014 Sep 25.
9
Scalable Bayesian variable selection for structured high-dimensional data.
Biometrics. 2018 Dec;74(4):1372-1382. doi: 10.1111/biom.12882. Epub 2018 May 8.
10
Joint Estimation of Precision Matrices in Heterogeneous Populations.
Electron J Stat. 2016;10(1):1341-1392. doi: 10.1214/16-EJS1137. Epub 2016 May 31.

引用本文的文献

1
Semi-parametric Bayes regression with network-valued covariates.
Mach Learn. 2022 Oct;111(10):3733-3767. doi: 10.1007/s10994-022-06174-z. Epub 2022 Jun 2.
2
Bayesian Tensor Modeling for Image-based Classification of Alzheimer's Disease.
Neuroinformatics. 2024 Oct;22(4):437-455. doi: 10.1007/s12021-024-09669-3. Epub 2024 Jun 7.
3
NExUS: Bayesian simultaneous network estimation across unequal sample sizes.
Bioinformatics. 2020 Feb 1;36(3):798-804. doi: 10.1093/bioinformatics/btz636.
4
A difference degree test for comparing brain networks.
Hum Brain Mapp. 2019 Oct 15;40(15):4518-4536. doi: 10.1002/hbm.24718. Epub 2019 Jul 26.

本文引用的文献

1
Estimating time-varying brain connectivity networks from functional MRI time series.
Neuroimage. 2014 Dec;103:427-443. doi: 10.1016/j.neuroimage.2014.07.033. Epub 2014 Aug 6.
2
Bayes variable selection in semiparametric linear models.
J Am Stat Assoc. 2014 Mar 1;109(505):437-447. doi: 10.1080/01621459.2014.881153.
3
Consistent high-dimensional Bayesian variable selection via penalized credible regions.
J Am Stat Assoc. 2012 Dec 21;107(500):1610-1624. doi: 10.1080/01621459.2012.716344. Epub 2012 Aug 14.
4
Subtyping glioblastoma by combining miRNA and mRNA expression data using compressed sensing-based approach.
EURASIP J Bioinform Syst Biol. 2013 Jan 14;2013(1):2. doi: 10.1186/1687-4153-2013-2.
5
Bayesian analysis of matrix normal graphical models.
Biometrika. 2009 Dec;96(4):821-834. doi: 10.1093/biomet/asp049. Epub 2009 Oct 9.
7
Bayesian Random Segmentation Models to Identify Shared Copy Number Aberrations for Array CGH Data.
J Am Stat Assoc. 2010 Dec;105(492):1358-1375. doi: 10.1198/jasa.2010.ap09250.
8
Integrated analysis of mutations, miRNA and mRNA expression in glioblastoma.
BMC Syst Biol. 2010 Nov 29;4:163. doi: 10.1186/1752-0509-4-163.
9
Let-7 microRNA inhibits the proliferation of human glioblastoma cells.
J Neurooncol. 2011 Mar;102(1):19-24. doi: 10.1007/s11060-010-0286-6. Epub 2010 Jul 7.
10
MicroRNAs and gene regulatory networks: managing the impact of noise in biological systems.
Genes Dev. 2010 Jul 1;24(13):1339-44. doi: 10.1101/gad.1937010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验