Suppr超能文献

规则是用来打破的:一个“简单”的模式生物揭示了基因调控的复杂性。

Rules are made to be broken: a "simple" model organism reveals the complexity of gene regulation.

机构信息

Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA.

Center for Computational Biology, University of California, Berkeley, CA, 94720, USA.

出版信息

Curr Genet. 2021 Feb;67(1):49-56. doi: 10.1007/s00294-020-01121-8. Epub 2020 Nov 1.

Abstract

Global methods for assaying translation have greatly improved our understanding of the protein-coding capacity of the genome. In particular, it is now possible to perform genome-wide and condition-specific identification of translation initiation sites through modified ribosome profiling methods that selectively capture initiating ribosomes. Here we discuss our recent study applying such an approach to meiotic and mitotic timepoints in the simple eukaryote, budding yeast, as an example of the surprising diversity of protein products-many of which are non-canonical-that can be revealed by such methods. We also highlight several key challenges in studying non-canonical protein isoforms that have precluded their prior systematic discovery. A growing body of work supports expanded use of empirical protein-coding region identification, which can help relieve some of the limitations and biases inherent to traditional genome annotation approaches. Our study also argues for the adoption of less static views of gene identity and a broader framework for considering the translational capacity of the genome.

摘要

全球翻译分析方法极大地提高了我们对基因组蛋白编码能力的理解。特别是,现在通过改良核糖体图谱分析方法,能够在全基因组范围内和特定条件下鉴定翻译起始位点,该方法可以选择性地捕获起始核糖体。在这里,我们将讨论我们最近的一项研究,该研究以简单真核生物芽殖酵母的减数分裂和有丝分裂时间点为例,应用了这种方法,展示了通过这种方法可以揭示出蛋白质产物的惊人多样性,其中许多是非规范的。我们还强调了在研究非规范蛋白亚型时存在的几个关键挑战,这些挑战阻碍了它们的系统发现。越来越多的工作支持扩大使用经验性蛋白编码区域鉴定,这有助于缓解传统基因组注释方法固有的一些限制和偏见。我们的研究还主张采用对基因同一性的不那么静态的观点和更广泛的框架来考虑基因组的翻译能力。

相似文献

1
Rules are made to be broken: a "simple" model organism reveals the complexity of gene regulation.
Curr Genet. 2021 Feb;67(1):49-56. doi: 10.1007/s00294-020-01121-8. Epub 2020 Nov 1.
2
Translation Initiation Site Profiling Reveals Widespread Synthesis of Non-AUG-Initiated Protein Isoforms in Yeast.
Cell Syst. 2020 Aug 26;11(2):145-160.e5. doi: 10.1016/j.cels.2020.06.011. Epub 2020 Jul 24.
3
4
Improved Ribosome-Footprint and mRNA Measurements Provide Insights into Dynamics and Regulation of Yeast Translation.
Cell Rep. 2016 Feb 23;14(7):1787-1799. doi: 10.1016/j.celrep.2016.01.043. Epub 2016 Feb 11.
5
High-resolution view of the yeast meiotic program revealed by ribosome profiling.
Science. 2012 Feb 3;335(6068):552-7. doi: 10.1126/science.1215110. Epub 2011 Dec 22.
6
The extent of ribosome queuing in budding yeast.
PLoS Comput Biol. 2018 Jan 29;14(1):e1005951. doi: 10.1371/journal.pcbi.1005951. eCollection 2018 Jan.
7
eIF1 discriminates against suboptimal initiation sites to prevent excessive uORF translation genome-wide.
RNA. 2020 Apr;26(4):419-438. doi: 10.1261/rna.073536.119. Epub 2020 Jan 8.
8
Ribosome Profiling for the Analysis of Translation During Yeast Meiosis.
Methods Mol Biol. 2017;1471:99-122. doi: 10.1007/978-1-4939-6340-9_4.
10
Impacts of uORF codon identity and position on translation regulation.
Nucleic Acids Res. 2019 Sep 26;47(17):9358-9367. doi: 10.1093/nar/gkz681.

引用本文的文献

1
SILAC-Based Proteomic Analysis of Meiosis in the Fission Yeast Schizosaccharomyces pombe.
Methods Mol Biol. 2023;2603:19-29. doi: 10.1007/978-1-0716-2863-8_2.
2
Gametogenesis: Exploring an Endogenous Rejuvenation Program to Understand Cellular Aging and Quality Control.
Annu Rev Genet. 2022 Nov 30;56:89-112. doi: 10.1146/annurev-genet-080320-025104. Epub 2022 Jul 25.

本文引用的文献

1
Some like it translated: small ORFs in the 5'UTR.
Exp Cell Res. 2020 Nov 1;396(1):112229. doi: 10.1016/j.yexcr.2020.112229. Epub 2020 Aug 17.
2
Translation Initiation Site Profiling Reveals Widespread Synthesis of Non-AUG-Initiated Protein Isoforms in Yeast.
Cell Syst. 2020 Aug 26;11(2):145-160.e5. doi: 10.1016/j.cels.2020.06.011. Epub 2020 Jul 24.
3
Non-canonical translation initiation in yeast generates a cryptic pool of mitochondrial proteins.
Nucleic Acids Res. 2019 Jun 20;47(11):5777-5791. doi: 10.1093/nar/gkz301.
4
Ribosome queuing enables non-AUG translation to be resistant to multiple protein synthesis inhibitors.
Genes Dev. 2019 Jul 1;33(13-14):871-885. doi: 10.1101/gad.324715.119. Epub 2019 Jun 6.
5
Function and Evolution of Upstream ORFs in Eukaryotes.
Trends Biochem Sci. 2019 Sep;44(9):782-794. doi: 10.1016/j.tibs.2019.03.002. Epub 2019 Apr 16.
6
Hidden in plain sight: what remains to be discovered in the eukaryotic proteome?
Open Biol. 2019 Feb 28;9(2):180241. doi: 10.1098/rsob.180241.
7
Alternative Translation Initiation at a UUG Codon Gives Rise to Two Functional Variants of the Mitochondrial Protein Kgd4.
J Mol Biol. 2019 Mar 29;431(7):1460-1467. doi: 10.1016/j.jmb.2019.02.023. Epub 2019 Feb 27.
9
The helicase Ded1p controls use of near-cognate translation initiation codons in 5' UTRs.
Nature. 2018 Jul;559(7712):130-134. doi: 10.1038/s41586-018-0258-0. Epub 2018 Jun 27.
10
Seq-ing answers: uncovering the unexpected in global gene regulation.
Curr Genet. 2018 Dec;64(6):1183-1188. doi: 10.1007/s00294-018-0839-3. Epub 2018 Apr 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验