Suppr超能文献

石墨烯中的涟漪:一种变分方法。

Ripples in Graphene: A Variational Approach.

作者信息

Friedrich Manuel, Stefanelli Ulisse

机构信息

Applied Mathematics, Universität Münster, Einsteinstr. 62, 48149 Münster, Germany.

Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria.

出版信息

Commun Math Phys. 2020;379(3):915-954. doi: 10.1007/s00220-020-03869-z. Epub 2020 Oct 6.

Abstract

Suspended graphene samples are observed to be gently rippled rather than being flat. In Friedrich et al. (Z Angew Math Phys 69:70, 2018), we have checked that this nonplanarity can be rigorously described within the classical molecular-mechanical frame of configurational-energy minimization. There, we have identified all ground-state configurations with graphene topology with respect to classes of next-to-nearest neighbor interaction energies and classified their fine nonflat geometries. In this second paper on graphene nonflatness, we refine the analysis further and prove the emergence of wave patterning. Moving within the frame of Friedrich et al. (2018), rippling formation in graphene is reduced to a two-dimensional problem for one-dimensional chains. Specifically, we show that almost minimizers of the configurational energy develop waves with specific wavelength, independently of the size of the sample. This corresponds remarkably to experiments and simulations.

摘要

悬浮的石墨烯样品被观察到是轻微起伏的,而不是平坦的。在弗里德里希等人(《应用数学与物理杂志》69:70,2018年)的研究中,我们已经验证了这种非平面性可以在构型能量最小化的经典分子力学框架内得到严格描述。在那里,我们已经确定了相对于次近邻相互作用能类别具有石墨烯拓扑结构的所有基态构型,并对它们精细的非平坦几何形状进行了分类。在关于石墨烯非平坦性的第二篇论文中,我们进一步细化分析并证明了波状图案的出现。在弗里德里希等人(2018年)的框架内,石墨烯中起伏的形成被简化为一维链的二维问题。具体来说,我们表明构型能量的几乎最小化者会产生具有特定波长的波,而与样品的大小无关。这与实验和模拟结果非常吻合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a53/7590943/a6d3d93b7321/220_2020_3869_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验