Suppr超能文献

基于光学相干断层扫描的深度学习模型用于检测中心性浆液性脉络膜视网膜病变。

Optical coherence tomography-based deep-learning model for detecting central serous chorioretinopathy.

机构信息

Department of Applied Artificial Intelligence, Sungkyunkwan University, Seoul, Korea.

Department of Medicine, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Gangwon-do, South Korea.

出版信息

Sci Rep. 2020 Nov 2;10(1):18852. doi: 10.1038/s41598-020-75816-w.

Abstract

Central serous chorioretinopathy (CSC) is a common condition characterized by serous detachment of the neurosensory retina at the posterior pole. We built a deep learning system model to diagnose CSC, and distinguish chronic from acute CSC using spectral domain optical coherence tomography (SD-OCT) images. Data from SD-OCT images of patients with CSC and a control group were analyzed with a convolutional neural network. Sensitivity, specificity, accuracy, and area under the receiver operating characteristic curve (AUROC) were used to evaluate the model. For CSC diagnosis, our model showed an accuracy, sensitivity, and specificity of 93.8%, 90.0%, and 99.1%, respectively; AUROC was 98.9% (95% CI, 0.983-0.995); and its diagnostic performance was comparable with VGG-16, Resnet-50, and the diagnoses of five different ophthalmologists. For distinguishing chronic from acute cases, the accuracy, sensitivity, and specificity were 97.6%, 100.0%, and 92.6%, respectively; AUROC was 99.4% (95% CI, 0.985-1.000); performance was better than VGG-16 and Resnet-50, and was as good as the ophthalmologists. Our model performed well when diagnosing CSC and yielded highly accurate results when distinguishing between acute and chronic cases. Thus, automated deep learning system algorithms could play a role independent of human experts in the diagnosis of CSC.

摘要

中心性浆液性脉络膜视网膜病变(CSC)是一种常见疾病,其特征是后极部神经感觉视网膜的浆液性脱离。我们构建了一个深度学习系统模型,用于诊断 CSC,并使用频域光相干断层扫描(SD-OCT)图像区分慢性和急性 CSC。使用卷积神经网络分析 CSC 患者和对照组的 SD-OCT 图像数据。使用敏感性、特异性、准确性和受试者工作特征曲线下面积(AUROC)来评估模型。对于 CSC 的诊断,我们的模型显示出 93.8%、90.0%和 99.1%的准确性、敏感性和特异性;AUROC 为 98.9%(95%CI,0.983-0.995);其诊断性能与 VGG-16、Resnet-50 和五位不同眼科医生的诊断相当。对于区分慢性和急性病例,准确性、敏感性和特异性分别为 97.6%、100.0%和 92.6%;AUROC 为 99.4%(95%CI,0.985-1.000);表现优于 VGG-16 和 Resnet-50,与眼科医生相当。我们的模型在诊断 CSC 时表现良好,在区分急性和慢性病例时产生了非常准确的结果。因此,自动化深度学习系统算法可以在 CSC 的诊断中独立于人类专家发挥作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c53e/7608618/b8d900b74c0a/41598_2020_75816_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验