Suppr超能文献

受大角羊角心帆状骨启发的用于冲击载荷应用的材料结构。

Bioinspired material architectures from bighorn sheep horncore velar bone for impact loading applications.

机构信息

Department of Mechanical Engineering, Colorado State University, 400 Isotope Drive, Fort Collins, CO, 80521, USA.

Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, 01003, USA.

出版信息

Sci Rep. 2020 Nov 3;10(1):18916. doi: 10.1038/s41598-020-76021-5.

Abstract

Rocky Mountain bighorn sheep rams (Ovis canadensis canadensis) routinely conduct intraspecific combat where high energy cranial impacts are experienced. Previous studies have estimated cranial impact forces to be up to 3400 N during ramming, and prior finite element modeling studies showed the bony horncore stores 3 × more strain energy than the horn during impact. In the current study, the architecture of the porous bone within the horncore was quantified, mimicked, analyzed by finite element modeling, fabricated via additive manufacturing, and mechanically tested to determine the suitability of the novel bioinspired material architecture for use in running shoe midsoles. The iterative biomimicking design approach was able to tailor the mechanical behavior of the porous bone mimics. The approach produced 3D printed mimics that performed similarly to ethylene-vinyl acetate shoe materials in quasi-static loading. Furthermore, a quadratic relationship was discovered between impact force and stiffness in the porous bone mimics, which indicates a range of stiffness values that prevents impact force from becoming excessively high. These findings have implications for the design of novel bioinspired material architectures for minimizing impact force.

摘要

落矶山绵羊公羊(Ovis canadensis canadensis)经常进行同种内战斗,会经历高能量的颅部冲击。先前的研究估计,在公羊撞击时,颅部撞击力高达 3400N,而先前的有限元建模研究表明,在撞击过程中,骨质角芯比角储存的应变能多 3 倍。在本研究中,量化、模拟、通过有限元建模分析、通过增材制造制造并进行机械测试,以确定多孔骨结构在跑鞋中底中的适用性新型仿生材料架构。迭代仿生设计方法能够调整多孔骨仿生材料的机械性能。该方法生产的 3D 打印仿生材料在准静态加载下的性能与乙烯-醋酸乙烯酯鞋材相似。此外,还发现多孔骨仿生材料的冲击力和刚度之间存在二次关系,这表明存在一系列刚度值,可以防止冲击力过高。这些发现对设计新型仿生材料架构以最小化冲击力具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ff9/7642289/9c677dc1fcbc/41598_2020_76021_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验