Suppr超能文献

力、流和燃料:通过整合膜电位、呼吸和代谢物的测量来追踪线粒体代谢。

Forces, fluxes, and fuels: tracking mitochondrial metabolism by integrating measurements of membrane potential, respiration, and metabolites.

机构信息

Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California.

Department of Medicine, University of California, Los Angeles, California.

出版信息

Am J Physiol Cell Physiol. 2021 Jan 1;320(1):C80-C91. doi: 10.1152/ajpcell.00235.2020. Epub 2020 Nov 4.

Abstract

Assessing mitochondrial function in cell-based systems is a central component of metabolism research. However, the selection of an initial measurement technique may be complicated given the range of parameters that can be studied and the need to define the mitochondrial (dys)function of interest. This methods-focused review compares and contrasts the use of mitochondrial membrane potential measurements, plate-based respirometry, and metabolomics and stable isotope tracing. We demonstrate how measurements of ) cellular substrate preference, ) respiratory chain activity, ) cell activation, and ) mitochondrial biogenesis are enriched by integrating information from multiple methods. This manuscript is meant to serve as a perspective to help choose which technique might be an appropriate initial method to answer a given question, as well as provide a broad "roadmap" for designing follow-up assays to enrich datasets or resolve ambiguous results.

摘要

评估基于细胞的系统中的线粒体功能是代谢研究的核心组成部分。然而,鉴于可以研究的参数范围以及需要定义感兴趣的线粒体(功能障碍),选择初始测量技术可能会很复杂。本方法重点综述比较和对比了线粒体膜电位测量、基于平板的呼吸测定法和代谢组学以及稳定同位素示踪法的应用。我们展示了如何通过整合来自多种方法的信息来丰富对)细胞底物偏好、)呼吸链活性、)细胞激活和)线粒体生物发生的测量。本文旨在提供一种观点,帮助选择哪种技术可能是回答特定问题的适当初始方法,并为设计后续测定以丰富数据集或解决模棱两可的结果提供广泛的“路线图”。

相似文献

1
Forces, fluxes, and fuels: tracking mitochondrial metabolism by integrating measurements of membrane potential, respiration, and metabolites.
Am J Physiol Cell Physiol. 2021 Jan 1;320(1):C80-C91. doi: 10.1152/ajpcell.00235.2020. Epub 2020 Nov 4.
2
A bioenergetics assay for studying the effects of environmental stressors on mitochondrial function in vivo in zebrafish larvae.
Comp Biochem Physiol C Toxicol Pharmacol. 2017 Feb;192:23-32. doi: 10.1016/j.cbpc.2016.12.001. Epub 2016 Dec 7.
3
Determining Compartment-Specific Metabolic Fluxes.
Methods Mol Biol. 2019;1862:137-149. doi: 10.1007/978-1-4939-8769-6_10.
4
Assessing mitochondrial respiratory bioenergetics in whole cells and isolated organelles by microplate respirometry.
Methods Cell Biol. 2020;155:157-180. doi: 10.1016/bs.mcb.2019.12.005. Epub 2020 Jan 27.
8
Integrated computational model of the bioenergetics of isolated lung mitochondria.
PLoS One. 2018 Jun 11;13(6):e0197921. doi: 10.1371/journal.pone.0197921. eCollection 2018.
9
Assessing Calcium-Stimulated Mitochondrial Bioenergetics Using the Seahorse XF96 Analyzer.
Methods Mol Biol. 2019;1925:197-222. doi: 10.1007/978-1-4939-9018-4_18.
10
An Update on Isolation of Functional Mitochondria from Cells for Bioenergetics Studies.
Methods Mol Biol. 2021;2310:79-89. doi: 10.1007/978-1-0716-1433-4_7.

引用本文的文献

4
Pro-inflammatory macrophage activation does not require inhibition of oxidative phosphorylation.
EMBO Rep. 2025 Feb;26(4):982-1002. doi: 10.1038/s44319-024-00351-y. Epub 2025 Jan 3.
5
Reduced bioenergetics and mitochondrial fragmentation in human primary cytotrophoblasts induced by an EGFR-targeting chemical mixture.
Chemosphere. 2024 Sep;364:143301. doi: 10.1016/j.chemosphere.2024.143301. Epub 2024 Sep 7.
6
Pro-inflammatory macrophage activation does not require inhibition of mitochondrial respiration.
bioRxiv. 2024 May 14:2024.05.10.593451. doi: 10.1101/2024.05.10.593451.
8
How and when to measure mitochondrial inner membrane potentials.
Biophys J. 2024 Dec 17;123(24):4150-4157. doi: 10.1016/j.bpj.2024.03.011. Epub 2024 Mar 7.
9
MYC is a regulator of androgen receptor inhibition-induced metabolic requirements in prostate cancer.
Cell Rep. 2023 Oct 31;42(10):113221. doi: 10.1016/j.celrep.2023.113221. Epub 2023 Oct 9.
10
Isolation of Mitochondria from Mouse Tissues for Functional Analysis.
Methods Mol Biol. 2023;2675:77-96. doi: 10.1007/978-1-0716-3247-5_7.

本文引用的文献

1
Escher-Trace: a web application for pathway-based visualization of stable isotope tracing data.
BMC Bioinformatics. 2020 Jul 10;21(1):297. doi: 10.1186/s12859-020-03632-0.
2
Toll-Like Receptors Induce Signal-Specific Reprogramming of the Macrophage Lipidome.
Cell Metab. 2020 Jul 7;32(1):128-143.e5. doi: 10.1016/j.cmet.2020.05.003. Epub 2020 Jun 8.
3
MitoPlex: A targeted multiple reaction monitoring assay for quantification of a curated set of mitochondrial proteins.
J Mol Cell Cardiol. 2020 May;142:1-13. doi: 10.1016/j.yjmcc.2020.03.011. Epub 2020 Mar 29.
4
UCP1-independent thermogenesis.
Biochem J. 2020 Feb 14;477(3):709-725. doi: 10.1042/BCJ20190463.
5
Macrophage activation as an archetype of mitochondrial repurposing.
Mol Aspects Med. 2020 Feb;71:100838. doi: 10.1016/j.mam.2019.100838. Epub 2020 Jan 16.
6
Regulation of Tumor Initiation by the Mitochondrial Pyruvate Carrier.
Cell Metab. 2020 Feb 4;31(2):284-300.e7. doi: 10.1016/j.cmet.2019.11.002. Epub 2019 Dec 5.
7
In vivo imaging of mitochondrial membrane potential in non-small-cell lung cancer.
Nature. 2019 Nov;575(7782):380-384. doi: 10.1038/s41586-019-1715-0. Epub 2019 Oct 30.
8
Should we consider subcellular compartmentalization of metabolites, and if so, how do we measure them?
Curr Opin Clin Nutr Metab Care. 2019 Sep;22(5):347-354. doi: 10.1097/MCO.0000000000000580.
9
The Metabolic Signature of Macrophage Responses.
Front Immunol. 2019 Jul 3;10:1462. doi: 10.3389/fimmu.2019.01462. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验