Department of Sociology.
Consumer Edge.
Psychol Methods. 2022 Jun;27(3):347-372. doi: 10.1037/met0000359. Epub 2020 Nov 5.
We develop a Bayesian group-based trajectory model (GBTM) and extend it to incorporate dual trajectories and Bayesian model averaging for model selection. Our framework lends itself to many of the standard distributions used in GBTMs, including normal, censored normal, binary, and ordered outcomes. On the model selection front, GBTMs require the researcher to specify a functional relationship between time and the outcome within each latent group. These relationships are generally polynomials with varying degrees in each group, but can also include additional covariates or other functions of time. When the number of groups is large, the model space can grow prohibitively complex, requiring a time-consuming brute-force search over potentially thousands of models. The approach developed in this article requires just one model fit and has the additional advantage of accounting for uncertainty in model selection. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
我们开发了一种基于贝叶斯的群组轨迹模型(GBTM),并对其进行了扩展,纳入了双轨迹和贝叶斯模型平均,以进行模型选择。我们的框架适用于 GBTM 中使用的许多标准分布,包括正态分布、删失正态分布、二项分布和有序结果。在模型选择方面,GBTM 需要研究人员在每个潜在群组内指定时间和结果之间的函数关系。这些关系通常是多项式,在每个群组中具有不同的次数,但也可以包括其他协变量或时间的其他函数。当群组数量很大时,模型空间可能会变得非常复杂,需要对潜在的数千个模型进行耗时的暴力搜索。本文所开发的方法只需要拟合一个模型,并且具有额外的优势,即可以考虑模型选择的不确定性。(PsycInfo 数据库记录(c)2022 APA,保留所有权利)。