Suppr超能文献

彩虹小马:可视化中彩虹配色方案的直观性、可解释性和可记忆性。

Rainbow Dash: Intuitiveness, Interpretability and Memorability of the Rainbow Color Scheme in Visualization.

作者信息

Golebiowska Izabela M, Coltekin Arzu

出版信息

IEEE Trans Vis Comput Graph. 2022 Jul;28(7):2722-2733. doi: 10.1109/TVCG.2020.3035823. Epub 2022 May 26.

Abstract

After demonstrating that rainbow colors are still commonly used in scientific publications, we comparatively evaluate the rainbow and sequential color schemes on choropleth and isarithmic maps in an empirical user study with 544 participants to examine if a) people intuitively associate order for the colors in these schemes, b) they can successfully conduct perceptual and semantic map reading and recall tasks with quantitative data where order may have implicit or explicit importance. We find that there is little to no agreement in ordering of rainbow colors while sequential colors are indeed intuitively ordered by the participants with a strong dark is more bias. Sequential colors facilitate most quantitative map reading tasks better than the rainbow colors, whereas rainbow colors competitively facilitate extracting specific values from a map, and may support hue recall better than sequential. We thus contribute to dark- versus light is more bias debate, demonstrate why and when rainbow colors may impair performance, and add further nuance to our understanding of this highly popular, yet highly criticized color scheme.

摘要

在证明彩虹色仍普遍用于科学出版物之后,我们在一项有544名参与者的实证用户研究中,对分级统计图和等值线图上的彩虹色方案和顺序色方案进行了比较评估,以检验:a)人们是否直观地将这些方案中的颜色顺序联系起来;b)他们能否成功地进行感知和语义地图阅读,并利用顺序可能具有隐含或明确重要性的定量数据完成回忆任务。我们发现,对于彩虹色的顺序,几乎没有达成共识,而参与者确实能直观地对顺序色进行排序,深色的偏向性更强。顺序色比彩虹色更有助于大多数定量地图阅读任务,而彩虹色在从地图中提取特定值方面具有竞争力,并且在色调回忆方面可能比顺序色表现更好。因此,我们为深色与浅色偏向性的争论做出了贡献,证明了彩虹色为何以及何时可能会损害表现,并为我们对这种广受欢迎但备受批评的配色方案的理解增添了更多细微差别。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验