Rozen-Levy Lital, Kolinski John M, Cohen Gil, Fineberg Jay
The Racah Institute of Physics, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel.
École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
Phys Rev Lett. 2020 Oct 23;125(17):175501. doi: 10.1103/PhysRevLett.125.175501.
While we fundamentally understand the dynamics of simple cracks propagating in brittle solids within perfect (homogeneous) materials, we do not understand how paths of moving cracks are determined. We experimentally study strongly perturbed cracks that propagate between 10% and 95% of their limiting velocity within a brittle material. These cracks are deflected by either interaction with sparsely implanted defects or via an intrinsic oscillatory instability in defect-free media. Dense high-speed measurements of the strain fields surrounding the crack tips reveal that crack paths are governed by the direction of maximal strain energy density, even when the near-tip singular fields are highly disrupted. This fundamentally important result may be utilized to either direct or guide running cracks.
虽然我们从根本上理解了在完美(均匀)材料中的脆性固体中简单裂纹扩展的动力学,但我们并不了解移动裂纹的路径是如何确定的。我们通过实验研究了在脆性材料中以其极限速度的10%至95%之间传播的强扰动裂纹。这些裂纹会因与稀疏植入的缺陷相互作用或通过无缺陷介质中的固有振荡不稳定性而发生偏转。对裂纹尖端周围应变场的密集高速测量表明,即使近尖端奇异场受到高度干扰,裂纹路径仍由最大应变能密度的方向控制。这一具有根本重要性的结果可用于引导或控制正在扩展的裂纹。