Suppr超能文献

人工智能识别膝关节 X 光片的关节置换植入物。

Artificial Intelligence to Identify Arthroplasty Implants From Radiographs of the Knee.

机构信息

Orthopaedic Machine Learning Laboratory, Cleveland Clinic, Cleveland, OH.

Orthopaedic Machine Learning Laboratory, Cleveland Clinic, Cleveland, OH; Department of Orthopaedic Surgery, Baylor College of Medicine, Houston, TX.

出版信息

J Arthroplasty. 2021 Mar;36(3):935-940. doi: 10.1016/j.arth.2020.10.021. Epub 2020 Oct 17.

Abstract

BACKGROUND

Revisions and reoperations for patients who have undergone total knee arthroplasty (TKA), unicompartmental knee arthroplasty (UKA), and distal femoral replacement (DFR) necessitates accurate identification of implant manufacturer and model. Failure risks delays in care, increased morbidity, and further financial burden. Deep learning permits automated image processing to mitigate the challenges behind expeditious, cost-effective preoperative planning. Our aim was to investigate whether a deep-learning algorithm could accurately identify the manufacturer and model of arthroplasty implants about the knee from plain radiographs.

METHODS

We trained, validated, and externally tested a deep-learning algorithm to classify knee arthroplasty implants from one of 9 different implant models from retrospectively collected anterior-posterior (AP) plain radiographs from four sites in one quaternary referral health system. The performance was evaluated by calculating the area under the receiver-operating characteristic curve (AUC), sensitivity, specificity, and accuracy when compared with a reference standard of implant model from operative reports.

RESULTS

The training and validation data sets were comprised of 682 radiographs across 424 patients and included a wide range of TKAs from the four leading implant manufacturers. After 1000 training epochs by the deep-learning algorithm, the model discriminated nine implant models with an AUC of 0.99, accuracy 99%, sensitivity of 95%, and specificity of 99% in the external-testing data set of 74 radiographs.

CONCLUSIONS

A deep learning algorithm using plain radiographs differentiated between 9 unique knee arthroplasty implants from four manufacturers with near-perfect accuracy. The iterative capability of the algorithm allows for scalable expansion of implant discriminations and represents an opportunity in delivering cost-effective care for revision arthroplasty.

摘要

背景

接受全膝关节置换术(TKA)、单髁膝关节置换术(UKA)和股骨远端置换术(DFR)的患者需要对植入物制造商和型号进行准确识别。如果无法识别,可能会导致手术延误、增加发病率和进一步的经济负担。深度学习可以实现自动化图像处理,从而减轻快速、经济高效的术前规划所面临的挑战。我们的目的是研究深度学习算法是否可以从普通 X 光片中准确识别膝关节的植入物制造商和型号。

方法

我们从一家四级转诊医疗系统的四个地点回顾性收集的前后位(AP)普通 X 光片中,使用一种深度学习算法对 9 种不同植入物模型中的 1 种进行训练、验证和外部测试,对膝关节的关节置换植入物进行分类。通过计算受试者工作特征曲线下的面积(AUC)、敏感性、特异性和准确性来评估性能,并与手术报告中的植入物模型参考标准进行比较。

结果

训练和验证数据集由来自 424 名患者的 682 张 X 光片组成,包括来自四个主要植入物制造商的各种 TKA。经过深度学习算法 1000 次训练后,该模型在外部测试数据集 74 张 X 光片中区分了 9 种植入物模型,AUC 为 0.99,准确率为 99%,敏感性为 95%,特异性为 99%。

结论

一种使用普通 X 光片的深度学习算法可以近乎完美的准确率区分来自四个制造商的 9 种独特的膝关节置换植入物。该算法的迭代能力允许对植入物进行可扩展的区分,为提供经济高效的翻修关节置换护理提供了机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验