Suppr超能文献

微流控半导体纳米线阵列中的场增强

Field enhancement in microfluidic semiconductor nanowire array.

作者信息

Shenoy Bhamy Maithry, Hegde Gopalkrishna, Roy Mahapatra D

机构信息

Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012, India.

BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India.

出版信息

Biomicrofluidics. 2020 Nov 2;14(6):064102. doi: 10.1063/5.0028899. eCollection 2020 Nov.

Abstract

Nano-material integrated microfluidic platforms are increasingly being considered to accelerate biological sample preparation and molecular diagnostics. A major challenge in this context is the generation of high electric fields for electroporation of cell membranes. In this paper, we have studied a novel mechanism of generating a high electric field in the microfluidic channels by using an array of semiconductor nanowires. When an electrostatic field is applied across a semiconductor nanowire array, the electric field is localized near the nanowires and the field strength is higher than what was reported previously with various other micro-geometries. Nanowires made of ZnO, Si, and Si-SiO and their orientation and array spacing are considered design parameters. It is observed that for a given ratio of the spacing between nanowires to the diameter, the electric field enhancement near the edges of ZnO nanowires is nearly 30 times higher compared to Si or Si-SiO nanowire arrays. This enhancement is a combined effect of the unique geometry with a pointed tip with a hexagonal cross section, the piezoelectric and the spontaneous polarization in the ZnO nanowires, and the electro-kinetics of the interface fluid. Considering the field localization phenomena, the trajectories of cells in the channel are analyzed. For a given inter-nanowire spacing and an applied electric field, the channels with ZnO nanowire arrays have a greater probability of cell lysis in comparison to Si-based nanowire arrays. Detailed correlations between the cell lysis probability with the inter-nanowire spacing and the applied electric field are reported.

摘要

纳米材料集成微流控平台正越来越多地被用于加速生物样品制备和分子诊断。在这种情况下,一个主要挑战是为细胞膜电穿孔产生高电场。在本文中,我们研究了一种通过使用半导体纳米线阵列在微流控通道中产生高电场的新机制。当在半导体纳米线阵列上施加静电场时,电场会局部集中在纳米线附近,且场强高于此前各种其他微几何结构所报道的场强。由氧化锌(ZnO)、硅(Si)和硅 - 二氧化硅(Si - SiO)制成的纳米线及其取向和阵列间距被视为设计参数。据观察,对于给定的纳米线间距与直径之比,ZnO纳米线边缘附近的电场增强比Si或Si - SiO纳米线阵列高出近30倍。这种增强是独特几何形状(具有六边形横截面的尖 tip)、ZnO纳米线中的压电和自发极化以及界面流体的电动学的综合作用。考虑到场局部化现象,分析了通道中细胞的轨迹。对于给定的纳米线间距和施加的电场,与基于Si的纳米线阵列相比,具有ZnO纳米线阵列的通道具有更高的细胞裂解概率。报告了细胞裂解概率与纳米线间距和施加电场之间的详细相关性。

相似文献

1
Field enhancement in microfluidic semiconductor nanowire array.
Biomicrofluidics. 2020 Nov 2;14(6):064102. doi: 10.1063/5.0028899. eCollection 2020 Nov.
2
Extracting optical absorption characteristics from semiconductor nanowire arrays.
Nanotechnology. 2022 Jul 7;33(39). doi: 10.1088/1361-6528/ac74cc.
3
Encoding Active Device Elements at Nanowire Tips.
Nano Lett. 2016 Jul 13;16(7):4713-9. doi: 10.1021/acs.nanolett.6b02236. Epub 2016 Jun 27.
4
Laterally assembled nanowires for ultrathin broadband solar absorbers.
Opt Express. 2014 May 5;22 Suppl 3:A992-A1000. doi: 10.1364/OE.22.00A992.
5
Low temperature synthesis and characterization of MgO/ZnO composite nanowire arrays.
Nanotechnology. 2009 Mar 25;20(12):125608. doi: 10.1088/0957-4484/20/12/125608. Epub 2009 Mar 4.
6
Coordination number model to quantify packing morphology of aligned nanowire arrays.
Phys Chem Chem Phys. 2013 Mar 21;15(11):4033-40. doi: 10.1039/c3cp43762k.
7
Field emission enhancement of Au-Si nano-particle-decorated silicon nanowires.
Nanoscale Res Lett. 2011 Feb 25;6(1):176. doi: 10.1186/1556-276X-6-176.
8
Local electric field enhancement at the heterojunction of Si/SiGe axially heterostructured nanowires under laser illumination.
Nanotechnology. 2016 Nov 11;27(45):455709. doi: 10.1088/0957-4484/27/45/455709. Epub 2016 Oct 11.
10
AC/DC Electric-Field-Assisted Growth of ZnO Nanowires for Gas Discharge.
Materials (Basel). 2022 Dec 22;16(1):108. doi: 10.3390/ma16010108.

本文引用的文献

1
Cell Transport Prompts the Performance of Low-Voltage Electroporation for Cell Inactivation.
Sci Rep. 2018 Oct 25;8(1):15832. doi: 10.1038/s41598-018-34027-0.
2
Nanowire-Modified Three-Dimensional Electrode Enabling Low-Voltage Electroporation for Water Disinfection.
Environ Sci Technol. 2016 Jul 19;50(14):7641-9. doi: 10.1021/acs.est.6b01050. Epub 2016 Jul 1.
4
Nanostructure embedded microchips for detection, isolation, and characterization of circulating tumor cells.
Acc Chem Res. 2014 Oct 21;47(10):2941-50. doi: 10.1021/ar5001617. Epub 2014 Aug 11.
5
Emerging role of nanomaterials in circulating tumor cell isolation and analysis.
ACS Nano. 2014 Mar 25;8(3):1995-2017. doi: 10.1021/nn5004277. Epub 2014 Mar 6.
6
Three-dimensional nano-biointerface as a new platform for guiding cell fate.
Chem Soc Rev. 2014 Apr 21;43(8):2385-401. doi: 10.1039/c3cs60419e. Epub 2014 Feb 6.
7
Vertical nanowire arrays as a versatile platform for protein detection and analysis.
Nanoscale. 2013 Nov 7;5(21):10226-35. doi: 10.1039/c3nr03113f. Epub 2013 Sep 24.
8
Silicon nanowire biosensor and its applications in disease diagnostics: a review.
Anal Chim Acta. 2012 Oct 24;749:1-15. doi: 10.1016/j.aca.2012.08.035. Epub 2012 Aug 28.
9
Cell membrane conformation at vertical nanowire array interface revealed by fluorescence imaging.
Nanotechnology. 2012 Oct 19;23(41):415102. doi: 10.1088/0957-4484/23/41/415102. Epub 2012 Sep 25.
10
Nanowire-integrated microfluidic devices for facile and reagent-free mechanical cell lysis.
Lab Chip. 2012 Aug 21;12(16):2914-21. doi: 10.1039/c2lc40154a. Epub 2012 Jun 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验