Suppr超能文献

基于网络药理学的气血康治疗新型冠状病毒肺炎恢复期分子机制研究

Network pharmacology-based study of the molecular mechanisms of Qixuekang in treating COVID-19 during the recovery period.

作者信息

Tian Jing, Sun Daolei, Xie Yuke, Liu Kun, Ma Yunshu

机构信息

College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine Kunming 650500, China.

Pharmaceutical Department, Yunnan Baiyao Group Co., Ltd. Kunming 650500, China.

出版信息

Int J Clin Exp Pathol. 2020 Oct 1;13(10):2677-2690. eCollection 2020.

Abstract

OBJECTIVE

In this research, the analytical method of network pharmacology was used to explore Qixuekang molecular mechanism in treating Coronavirus 2019 (COVID-19) during the recovery period.

METHODS

Traditional Chinese Medicine Systems Pharmacology (TCMSP) database was used to collect the active components and corresponding targets of Qixuekang. Disease targets, related to COVID-19 during the recovery period, were collected from the GeneCards database. Protein-Protein interaction (PPI) network was built by using the String database, and analyzing and using Cytoscape 3.7.0 software to screen out hub genes. GO enrichment and KEGG pathway enrichment analysis were analyzed by R 3.6.1 software.

RESULTS

34 active components of Qixuekang were screened out, and 161 common targets of drug and disease were identified. GO enrichment suggested 141 biologic processes, mainly involving nuclear receptor activity, transcription factor activity, and direct ligand regulated sequence-specific DNA binding. KEGG pathway enrichment suggests 96 signaling pathways, mainly including TNF signaling pathway, IL-17 signal pathway, and C-type lectin receptor signal pathway. The hub genes, screened in the PPI network, were mainly inclusive of CXCL8, CXCL2, CXCL10, ADRA2A, and ADRA2C.

CONCLUSION

Qixuekang has numerous components and targets in treating COVID-19 during the recovery period. It is mainly applied in anti-inflammatory action and regulating immune defense, which may guide clinical trials in the later stage.

摘要

目的

本研究采用网络药理学分析方法,探讨气血康治疗新型冠状病毒肺炎(COVID-19)恢复期的分子机制。

方法

利用中药系统药理学数据库(TCMSP)收集气血康的活性成分及相应靶点。从GeneCards数据库收集与COVID-19恢复期相关的疾病靶点。使用String数据库构建蛋白质-蛋白质相互作用(PPI)网络,并运用Cytoscape 3.7.0软件进行分析,筛选出枢纽基因。通过R 3.6.1软件进行基因本体(GO)富集分析和京都基因与基因组百科全书(KEGG)通路富集分析。

结果

筛选出气血康34种活性成分,确定了药物与疾病的161个共同靶点。GO富集显示141个生物学过程,主要涉及核受体活性、转录因子活性以及直接配体调控的序列特异性DNA结合。KEGG通路富集显示96条信号通路,主要包括肿瘤坏死因子(TNF)信号通路、白细胞介素-17(IL-17)信号通路和C型凝集素受体信号通路。在PPI网络中筛选出的枢纽基因主要包括趋化因子配体8(CXCL8)、趋化因子配体2(CXCL2)、趋化因子配体10(CXCL10)、肾上腺素能受体α2A(ADRA2A)和肾上腺素能受体α2C(ADRA2C)。

结论

气血康在治疗COVID-19恢复期有众多成分和靶点。其主要作用于抗炎和调节免疫防御,可为后期临床试验提供指导。

相似文献

2
Exploration of the mechanism of Zisheng Shenqi decoction against gout arthritis using network pharmacology.
Comput Biol Chem. 2021 Feb;90:107358. doi: 10.1016/j.compbiolchem.2020.107358. Epub 2020 Aug 8.
4
Potential mechanisms of in treating prostate cancer based on network pharmacology and molecular docking.
Drug Dev Ind Pharm. 2022 May;48(5):189-197. doi: 10.1080/03639045.2022.2088785. Epub 2022 Aug 5.
6
Study on the Mechanism of Liuwei Dihuang Pills in Treating Parkinson's Disease Based on Network Pharmacology.
Biomed Res Int. 2021 Oct 28;2021:4490081. doi: 10.1155/2021/4490081. eCollection 2021.
9
[Mechanism of Xuebijing Injection in treatment of sepsis-associated ARDS based on network pharmacology and in vitro experiment].
Zhongguo Zhong Yao Za Zhi. 2023 Jun;48(12):3345-3359. doi: 10.19540/j.cnki.cjcmm.20230202.703.
10
Exploring potential mechanisms of Suhexiang Pill against COVID-19 based on network pharmacology and molecular docking.
Medicine (Baltimore). 2021 Dec 23;100(51):e27112. doi: 10.1097/MD.0000000000027112.

引用本文的文献

1
Effectiveness and safety of Qixuekang Oral Liquid on vascular health.
J Transl Int Med. 2025 Jan 10;12(6):618-620. doi: 10.1515/jtim-2024-0036. eCollection 2024 Dec.
3
Thrombocytopenia in COVID‑19 and vaccine‑induced thrombotic thrombocytopenia.
Int J Mol Med. 2022 Mar;49(3). doi: 10.3892/ijmm.2022.5090. Epub 2022 Jan 21.

本文引用的文献

1
Protocol for Prevention and Control of COVID-19 (Edition 6).
China CDC Wkly. 2020 May 8;2(19):321-326. doi: 10.46234/ccdcw2020.082.
2
Persistent detection of SARS-CoV-2 RNA in patients and healthcare workers with COVID-19.
J Clin Virol. 2020 Aug;129:104477. doi: 10.1016/j.jcv.2020.104477. Epub 2020 May 30.
3
New SARS-like virus in China triggers alarm.
Science. 2020 Jan 17;367(6475):234-235. doi: 10.1126/science.367.6475.234.
4
Application of Chinese Medicine in Acute and Critical Medical Conditions.
Am J Chin Med. 2019;47(6):1223-1235. doi: 10.1142/S0192415X19500629. Epub 2019 Sep 10.
5
Role of the HIF-1 signaling pathway in chronic obstructive pulmonary disease.
Exp Ther Med. 2018 Dec;16(6):4553-4561. doi: 10.3892/etm.2018.6785. Epub 2018 Sep 21.
6
Ethyl linoleate inhibits α-MSH-induced melanogenesis through Akt/GSK3β/β-catenin signal pathway.
Korean J Physiol Pharmacol. 2018 Jan;22(1):53-61. doi: 10.4196/kjpp.2018.22.1.53. Epub 2017 Dec 22.
7
Regulation and function of interleukin-36 cytokines.
Immunol Rev. 2018 Jan;281(1):169-178. doi: 10.1111/imr.12610.
8
Overexpression of IL-38 protein in anticancer drug-induced lung injury and acute exacerbation of idiopathic pulmonary fibrosis.
Respir Investig. 2017 Sep;55(5):293-299. doi: 10.1016/j.resinv.2017.06.001. Epub 2017 Aug 12.
9
Neutrophil extracellular traps can serve as platforms for processing and activation of IL-1 family cytokines.
FEBS J. 2017 Jun;284(11):1712-1725. doi: 10.1111/febs.14075. Epub 2017 Apr 26.
10
CXCL10/IP-10 Neutralization Can Ameliorate Lipopolysaccharide-Induced Acute Respiratory Distress Syndrome in Rats.
PLoS One. 2017 Jan 3;12(1):e0169100. doi: 10.1371/journal.pone.0169100. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验