Suppr超能文献

基于非对比增强 CT 的影像组学分析在鉴别自发性脑出血后早期血肿扩大中的应用。

Noncontrast Computed Tomography-Based Radiomics Analysis in Discriminating Early Hematoma Expansion after Spontaneous Intracerebral Hemorrhage.

机构信息

Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.

Department of Radiology, Chongqing General Hospital, Chongqing, China.

出版信息

Korean J Radiol. 2021 Mar;22(3):415-424. doi: 10.3348/kjr.2020.0254. Epub 2020 Oct 21.

Abstract

OBJECTIVE

To determine whether noncontrast computed tomography (NCCT) models based on multivariable, radiomics features, and machine learning (ML) algorithms could further improve the discrimination of early hematoma expansion (HE) in patients with spontaneous intracerebral hemorrhage (sICH).

MATERIALS AND METHODS

We retrospectively reviewed 261 patients with sICH who underwent initial NCCT within 6 hours of ictus and follow-up CT within 24 hours after initial NCCT, between April 2011 and March 2019. The clinical characteristics, imaging signs and radiomics features extracted from the initial NCCT images were used to construct models to discriminate early HE. A clinical-radiologic model was constructed using a multivariate logistic regression (LR) analysis. Radiomics models, a radiomics-radiologic model, and a combined model were constructed in the training cohort (n = 182) and independently verified in the validation cohort (n = 79). Receiver operating characteristic analysis and the area under the curve (AUC) were used to evaluate the discriminative power.

RESULTS

The AUC of the clinical-radiologic model for discriminating early HE was 0.766. The AUCs of the radiomics model for discriminating early HE built using the LR algorithm in the training and validation cohorts were 0.926 and 0.850, respectively. The AUCs of the radiomics-radiologic model in the training and validation cohorts were 0.946 and 0.867, respectively. The AUCs of the combined model in the training and validation cohorts were 0.960 and 0.867, respectively.

CONCLUSION

NCCT models based on multivariable, radiomics features and ML algorithm could improve the discrimination of early HE. The combined model was the best recommended model to identify sICH patients at risk of early HE.

摘要

目的

确定基于多变量、放射组学特征和机器学习(ML)算法的非对比 CT(NCCT)模型是否可以进一步提高自发性脑出血(sICH)患者早期血肿扩大(HE)的鉴别能力。

材料与方法

我们回顾性分析了 2011 年 4 月至 2019 年 3 月期间,261 例发病后 6 小时内行初始 NCCT 检查且 24 小时内行随访 CT 检查的 sICH 患者。使用初始 NCCT 图像提取的临床特征、影像学表现和放射组学特征构建模型以鉴别早期 HE。使用多变量逻辑回归(LR)分析构建临床-影像学模型。在训练队列(n = 182)中构建放射组学模型、放射组学-影像学模型和联合模型,并在验证队列(n = 79)中独立验证。采用受试者工作特征分析和曲线下面积(AUC)评估鉴别能力。

结果

用于鉴别早期 HE 的临床-影像学模型的 AUC 为 0.766。在训练和验证队列中,使用 LR 算法构建的放射组学模型鉴别早期 HE 的 AUC 分别为 0.926 和 0.850。放射组学-影像学模型在训练和验证队列中的 AUC 分别为 0.946 和 0.867。联合模型在训练和验证队列中的 AUC 分别为 0.960 和 0.867。

结论

基于多变量、放射组学特征和 ML 算法的 NCCT 模型可以提高早期 HE 的鉴别能力。联合模型是识别早期 HE 风险 sICH 患者的最佳推荐模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e00/7909850/410c4a4c00f5/kjr-22-415-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验