Kouser Hiba N, Barnard-Mayers Ruby, Murray Eleanor
Epidemiology, Boston University, Boston, Massachusetts, USA.
Epidemiology, Boston University, Boston, Massachusetts, USA
J Epidemiol Community Health. 2021 Jul;75(7):702-708. doi: 10.1136/jech-2019-213052. Epub 2020 Nov 10.
Systems models, which by design aim to capture multi-level complexity, are a natural choice of tool for bridging the divide between social epidemiology and causal inference. In this commentary, we discuss the potential uses of complex systems models for improving our understanding of quantitative causal effects in social epidemiology. To put systems models in context, we will describe how this approach could be used to optimise the distribution of COVID-19 response resources to minimise social inequalities during and after the pandemic.
系统模型旨在从设计上捕捉多层次的复杂性,是弥合社会流行病学与因果推断之间差距的天然工具选择。在本评论中,我们讨论复杂系统模型在增进我们对社会流行病学中定量因果效应理解方面的潜在用途。为了将系统模型置于具体情境中,我们将描述如何使用这种方法来优化新冠疫情应对资源的分配,以在疫情期间及之后将社会不平等降至最低。